Trigger Mechanisms for Volcanic Eruptions at Campi Flegrei caldera (Southern-Italy) in the last 5ka of activity
Abstract
Products from the 3.98 ± 0.53 ka year-old Nisida eruption have been studied in order to investigate the role of magma mingling/mixing, degassing and crystal fractionation in triggering volcanic eruptions during the last 5 ka of volcanic activity at Campi Flegrei caldera (Southern Italy). Due to persistent unrest, the explosive character of its volcanism and the large population living within the caldera and its surroundings, the volcanic risk in this nested, resurgent caldera is among the highest on Earth and demands an accurate reconstruction of processes driving recent volcanism. We present major elements and isotope data on bulk rock, glass matrix and separated phenocrysts, along with major and volatile elements on clinopyroxene-hosted melt inclusions, of products from Nisida and other Campi Flegrei eruptions occurred in the last 5 ka. The new data, together with literature data, suggest that crystal fractionation may account for the chemical variability of the extruded melt, although additional processes, such as magma mingling/mixing and/or entrapment of antecrysts into the magma prior to eruption are required to explain the large isotopic variation displayed by the analyzed products. In particular, the Nisida eruption was triggered by the arrival of isotopically distinct (87Sr/86Sr ~ 0.7073), poorly differentiated (latite), volatile-rich magma (H2O up to 4 wt.%). This is in line with what already proposed for the Agnano-Monte Spina (~ 4.1 ka) and Minopoli 2 eruptions (~ 9.7 ka), both occurred in the eastern sector of the Campi Flegrei caldera affected by extension. Noteworthy, Campi Flegrei caldera is located at the intersection of regional NE-SW and NW-SE fault systems and characterized by large caldera-forming eruptions and resurgence of the caldera floor following a simple shearing mechanism. In particular, deep, latitic magmas, rose along portions of faults of the NE-SW system, in the eastern sector of the caldera affected by extensional processes, determining geochemical features that are not observed in the western sector subject to compression.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.V31D2814A
- Keywords:
-
- 1036 GEOCHEMISTRY / Magma chamber processes;
- 1043 GEOCHEMISTRY / Fluid and melt inclusion geochemistry;
- 8488 VOLCANOLOGY / Volcanic hazards and risks