Heat Production as a Tool in Geothermal Exploration
Abstract
Heat flow data (together with knowledge, or assumptions, of stratigraphy, thermal conductivity and heat production) provide the prime parameter for estimating the potential of geothermal resources. Unfortunately this information is expensive to obtain as it requires deep boreholes. Consequently it is sparse or lacking in areas not traditionally considered as having geothermal potential. New England (and most of the northeastern U.S.A.) is one such area. However, in the absence of volcano-derived hydrothermal activity with its attendant high heat flow, granitic plutons provide an alternative geothermal resource. Compared with other crustal rocks, granites contain higher concentrations of heat-producing elements (K, U, Th). Additionally, they are relatively homogeneous, compared to surrounding country rock, allowing for stimulation through hydro-fracking of large (>1 km3) geothermal reservoirs. Consequently we have adopted a different approach, obtaining heat production data rather then relying on the very sparse heat flow data. Birch and colleagues long since recognized the relationship between heat flow and heat production as an integral part of their concept of Heat Flow Provinces. Heat production is readily determined in the laboratory by measuring the density of a sample and the concentrations of its heat-producing elements potassium, uranium and thorium. We have determined the heat production for 570 samples from most of the major granitic and gneissic bodies in Massachusetts and Connecticut. We have also measured these parameters for 70 sedimentary rocks that cover granites and gneiss in the Connecticut and Narragansett Basins. This data is being used to calculate inferred heat flow data for these localities. Comparison of these inferred heat flow values with the sparse number of those measured directly in boreholes in the two States is encouraging, indicating that this approach has merit. We have also measured thermal conductivity on all of these samples. This, together with the measured heat production and the inferred heat flow allow the calculation of inferred temperature - depth profiles for these localities, from which we have produced maps showing the distribution of heat production, thermal conductivity, inferred heat flow and inferred temperatures at depths of 2, 4 and 6 km in the two States. We believe that this is a rapid and relatively cheap approach for evaluating the geothermal potential of a region lacking in heat flow data allowing identification of areas that warrant more detailed investigation which would include geophysical surveys and drilling. In Massachusetts and Connecticut such areas include the Fitchburg pluton, Permian granites and the Narragansett and Hartford Basins, where gneiss and granites are buried beneath Carboniferous and Triassic sediments respectively. This project is funded by the Department of Energy through an award to the Association of American State Geologists.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.V13C2874R
- Keywords:
-
- 0932 EXPLORATION GEOPHYSICS / Radioactivity methods;
- 1009 GEOCHEMISTRY / Geochemical modeling;
- 3610 MINERALOGY AND PETROLOGY / Geochemical modeling