Late magmatic stage of the zoned Caleu pluton (Central Chile): insights from zircon crystallization conditions
Abstract
The Caleu pluton consists of three N-S elongated lithological zones: Gabbro-Diorite Zone (GDZ), Tonalite Zone (TZ) and Granodiorite Zone (GZ); western, middle and eastern portions of the pluton, respectively. The zones are thought to be previously differentiated in a common, isotopically depleted (Sr-Nd), subjacent magma reservoir at a 4 kbar equivalent depth. The emplacement should have occurred at the climax of the Cretaceous rifting. We present preliminary results of U238/Pb206 zircon geochronology; zircon saturation, Tsat(Zrn), and crystallization temperatures (Ti-in-Zrn); as well as relative oxidation states at time of crystallization, based on: (i) the sluggish REE and HFSE subsolidus diffusivities in zircon; (ii) the behavior of Ti4+↔Si4+ and Ce4+↔Zr4+ isovalent replacement, in addition to a constrained TiO2 activity in almost all typical crustal rocks; and (iii) relative oxidation states at time of crystallization, respectively. The latter are obtained by interpolation of the partition coefficients of trivalent (REE) and tetravalent (HFSE) curves in Onuma diagrams for each zircon, and then estimating relative Ce(IV)/Ce(III) ratios. Results obtained from 4 samples (a total of 77 zircon grains) collected from the three mentioned lithological zones indicate U/Pb ages of approximately 99.5 ±1.5 Ma, 96.8 ±0.6 Ma, and 94.4 +2.2 -0.8 Ma; and Ti-in Zrn ranges of ca. 720-870°C, ca. 680-820°C and ca. 750-840°C, for the GDZ, TZ and GZ samples, respectively. On the other hand Tsat(Zrn) of ca. 750-780°C in the TZ, and ca. 830-890°C in the GZ, were obtained. As expected saturation temperatures are similar or higher than Ti-in-Zrn obtained in zircon grains of TZ and GZ, respectively. Cathodoluminiscence images in zircon suggest a magmatic origin, due to absence of complex zoning patterns and fairly well conserved morphologies. Exceptionally the GDZ sample zircons show evidence of inheritance, indicating a xenocrystic and/or antecrystic origin. A relative Ce(IV)/Ce(III) decrease with temperature gives rise to separate trends for each zone, suggesting an independent unbuffered development at time of zircon formation. Taking into account variations in zircon ages, morphologies and crystallization ranges in the collected samples, it is suggested that zircon crystallization took place independent of the magma composition. Furthermore, old inherited zircon grains in the GDZ could be antecrysts, or products of a restricted and not major host rock assimilation, owing to the impossibility of basaltic magmas to saturate zircon crystals, and the isotopically depleted signature. This study is financed by CONICYT-FONDAP grant 15090013, Centro de Excelencia en Geotermia de los Andes (CEGA); and the CONICYT PBCT-PDA07, Programa Bicentenario de Ciencia y Tecnología.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.T13G2716M
- Keywords:
-
- 3618 MINERALOGY AND PETROLOGY / Magma chamber processes;
- 3620 MINERALOGY AND PETROLOGY / Mineral and crystal chemistry;
- 3640 MINERALOGY AND PETROLOGY / Igneous petrology