Analysis of the Shallow Slip Deficit Using Sub-Pixel Image Correlation:examples from various large continental strike-slip earthquakes
Abstract
We use the optical image correlation technique to analyze the near-field displacement field for a variety of large (Mw 7+) continental strike-slip earthquakes, to better determine the contribution of distributed deformation to coseismic surface ruptures. Various satellite datasets are correlated using the COSI-Corr software package, including WorldView, Quickbird, SPOT and Landsat7 imagery, along with de-classified KH-9 spy satellite imagery and aerial photos, allowing us to investigate earthquakes as far back as 1976. The variety of datasets used highlights the versatility of COSI-Corr for measuring displacements at the Earth's surface. The following earthquakes are investigated: 1976 Guatemala (Mw 7.5), 1990 Luzon (Mw 7.4), 1992 Landers (Mw 7.3), 1995 Sakhalin (Mw 7.0), 1997 Zirkuh (Mw 7.2), 1999 Izmit (Mw 7.6), 1999 Hector Mine (Mw 7.1), 1999 Duzce (Mw 7.1), 2001 Kokoxilli (Mw 7.1) and 2002 Denali (Mw 7.8). For each event we examine the surface displacement field produced by COSI-Corr, and compare them with published field measurements to assess the component of distributed deformation that may be routinely missed by geologists when collecting data in the field. These results also complement surface displacements determined using InSAR, which commonly de-correlates at distances of 1-2 km from the fault rupture. Fault displacements are extracted from the displacement maps using a new tool written for MATLAB, which extracts the maximum and minimum values on either side of the fault, as well as the distance between these points, thus giving a potential measure of the total width of the deforming zone. Where possible, we determine the total geological displacements for each fault through analysis of satellite data, geological maps and published results, thus allowing an assessment of the structural maturity for each fault. The difference between field measurements and COSI-Corr-derived measurements of the coseismic displacement field are compared with geological parameters such as the structural maturity for each fault. Such an approach allows us to explore the various parameters that control deformation in the upper crust. This study therefore has significant implications for the assessment of seismic hazard in actively deforming regions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.T13D2652M
- Keywords:
-
- 1240 GEODESY AND GRAVITY / Satellite geodesy: results;
- 7205 SEISMOLOGY / Continental crust;
- 8118 TECTONOPHYSICS / Dynamics and mechanics of faulting;
- 8163 TECTONOPHYSICS / Rheology and friction of fault zones