LROC Advances in Lunar Science
Abstract
Since entering orbit in 2009 the Lunar Reconnaissance Orbiter Camera (LROC) has acquired over 700,000 Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images of the Moon. This new image collection is fueling research into the origin and evolution of the Moon. NAC images revealed a volcanic complex 35 x 25 km (60N, 100E), between Compton and Belkovich craters (CB). The CB terrain sports volcanic domes and irregular depressed areas (caldera-like collapses). The volcanic complex corresponds to an area of high-silica content (Diviner) and high Th (Lunar Prospector). A low density of impact craters on the CB complex indicates a relatively young age. The LROC team mapped over 150 volcanic domes and 90 volcanic cones in the Marius Hills (MH), many of which were not previously identified. Morphology and compositional estimates (Diviner) indicate that MH domes are silica poor, and are products of low-effusion mare lavas. Impact melt deposits are observed with Copernican impact craters (>10 km) on exterior ejecta, the rim, inner wall, and crater floors. Preserved impact melt flow deposits are observed around small craters (25 km diam.), and estimated melt volumes exceed predictions. At these diameters the amount of melt predicted is small, and melt that is produced is expected to be ejected from the crater. However, we observe well-defined impact melt deposits on the floor of highland craters down to 200 m diameter. A globally distributed population of previously undetected contractional structures were discovered. Their crisp appearance and associated impact crater populations show that they are young landforms (<1 Ga). NAC images also revealed small extensional troughs. Crosscutting relations with small-diameter craters and depths as shallow as 1 m indicate ages <50 Ma. These features place bounds on the amount of global radial contraction and the level of compressional stress in the crust. WAC temporal coverage of the poles allowed quantification of highly illuminated regions, including one site that remains lit for 94% of a year (longest eclipse period of 43 hours). Targeted NAC images provide higher resolution characterization of key sites with permanent shadow and extended illumination. Repeat WAC coverage provides an unparalleled photometric dataset allowing spatially resolved solutions (currently 1 degree) to Hapke's photometric equation - data invaluable for photometric normalization and interpreting physical properties of the regolith. The WAC color also provides the means to solve for titanium, and distinguish subtle age differences within Copernican aged materials. The longevity of the LRO mission allows follow up NAC and WAC observations of previously known and newly discovered targets over a range of illumination and viewing geometries. Of particular merit is the acquisition of NAC stereo pairs and oblique sequences. With the extended SMD phase, the LROC team is working towards imaging the whole Moon with pixel scales of 50 to 200 cm.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.P42A..03R
- Keywords:
-
- 5464 PLANETARY SCIENCES: SOLID SURFACE PLANETS / Remote sensing;
- 5494 PLANETARY SCIENCES: SOLID SURFACE PLANETS / Instruments and techniques;
- 6250 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Moon