An In-Situ Rb-Sr Dating & Organics Characterization Instrument For A MER+ Sized Rover
Abstract
We posit that a Mars in-situ geochronology mission that will triage and validate samples for Mars Sample Return (MSR) is technically feasible in the 2018-2022 time frame and addresses the competing scientific, political, and fiscal requirements for flight in this decade.The mission must be responsive to the astrobiological and chronological science goals of the MEPAG, Decadal Survey (DS), and E2E-iSAG, and avoid the MSR appearance of long term political commitment and cost. These requirements can best be accomplished by a rover with a coring drill. JPL has reassessed the MER landing system performance, and determined that the system is capable of significantly higher landed mass (~40-60 kg plus reserve), allowing more sophisticated instruments to be carried. The instrument package is comprised of a time of flight (TOF) mass spectrometer combined with a laser desorption resonance ionization source to sensitively measure isobar free Rb-Sr isotopes for geochronology and organics characterization. The desorption laser is also used with a μRaman/LIBS for mineral characterization, which in combination with the TOF, will additionally provide measurements of K-Ar isotopes for a second form of radiometric dating. The laser desorption resonance ionization mass spectrometry (LDRIMS) technique avoids the interference and mass resolution issues associated with geochronology measurements, and has miniaturization potential. A sample is placed in the TOF mass spectrometer and surface atoms, molecules, and ions are desorbed with a 213 nm laser. Ions are suppressed by an electric field and the plume of expanding particles is present for many μs, during which it is first illuminated with laser light tuned to ionize only Sr, and then 1-3 μs later, for Rb. We have partially miniaturized the instrument, including Sr lasers, ablation laser, and mass spectrometer, and will soon to start using the instrument for field measurements. Our current prototype can measure the isotope ratio of lab standards with 10 ppm net Sr or Rb to a precision of ±0.1% (1σ), with a sensitivity of 1:10^10 in ~15 minutes. Before working with high value samples, we are validating the technique on terrestrial materials such as the Boulder Creek Granite (BCG). Using LDRIMS, we have succeeded at producing a moderate precision date for BCG of 1.72±0.087 Ga (n=288, MSWD=1; ±0.60 Ga for MSWD=2). Our mission feeds forward into MSR by validating that the collected samples are astrobiologically and geochronologically relevant, and triages those samples by scientific priority for return by MSR. Figure 1: Calibrated repeat isochron of the BCG.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.P11B1821A
- Keywords:
-
- 1040 GEOCHEMISTRY / Radiogenic isotope geochemistry;
- 1160 GEOCHRONOLOGY / Planetary and lunar geochronology;
- 5494 PLANETARY SCIENCES: SOLID SURFACE PLANETS / Instruments and techniques;
- 6225 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Mars