How microtopography and soil morphology can help decipher flow paths and processes in headwater catchments
Abstract
Headwater catchments dominate the drainage basins of larger rivers and determine the water quality of downstream water bodies. In these catchments, hydrology strongly influences soil development and soil chemistry, thereby determining stream water quality. This study aims to explain spatial and temporal variations of flow paths and fine scale variations in hydrologic regimes at the headwater catchment scale utilizing a hydropedological approach. Hydropedologic units (HPUs), defined by differing soil morphological characteristics provide a framework for describing the function of different soil types in a catchment. Preliminary analysis and field observations also indicate that HPU locations will be predictable based on surface microtopography calculated from a 1-meter, LiDAR (Light Detection and Range) derived digital elevation model. We show that water table data from 50 wells distributed throughout the catchment confirms HPUs are indicative of specific hydrologic flow regimes, including threshold behavior, consistent with predictions based on soil morphology alone. This study focuses on three intensive study sites representative of typical soil morphological development in a small catchment. Furthering the water table analysis, measures of saturated and unsaturated hydrologic regimes, surface topographic characteristics, subsurface characteristics, and soil morphology were compared for the three intensive sites in an effort to quantify the effect of surface microtopography on the proposed hydropedologic system. Preliminary analysis shows matric potential gradients develop laterally down slope at site locations hypothesized to be indicative of lateral podsolization based on site topography and soil morphology. These results are in agreement with our findings describing threshold behavior in water table development at the same sites. The results of this study suggest a hydropedological approach may be a useful tool for describing catchment runoff response as well as spatial patterns in soil moisture, soil chemistry, and therefore stream water chemistry.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.H41G1251G
- Keywords:
-
- 1804 HYDROLOGY / Catchment;
- 1865 HYDROLOGY / Soils;
- 1875 HYDROLOGY / Vadose zone