Temporal variation of aqueous-extractable Ca, Mg and K in acidified forest mountainous soils under different vegetation cover
Abstract
Acidification of forest soils is a natural degradation process which can be significantly enhanced by anthropogenic activities. Inputs of basic cations (BC - Ca, Mg and K) via precipitation, litter and soil organic matter decomposition and also via inter-soil weathering may partially mitigate the consequences of this degradation process. The aim of this study is to assess the temporal variation of aqueous-extractable Ca, Mg and K in acidified forest mountainous soils under different vegetation cover. The Jizera Mountains region (Czech Republic, northern Bohemia) was chosen as a representative soil mountainous ecosystem strongly affected by acidification. Soil and precipitation samples were collected at monthly basis from April till October/ November during the years 2009-2011. Study spots were delimited under two contrasting vegetation covers - beech and spruce monoculture. Prevailing soil types were classified as Alumic Cambisols under beech and Entic Podzols under spruce stands (according to FAO classification). Soil samples were collected from surface fermentation (F) and humified (H) organic horizons and subsurface B horizons (cambic or spodic). The collected soil samples were analyzed immediately under laboratory condition in a "fresh" state. Unsieved fresh samples were extracted by deionised water. The content of main elements (Ca, Mg, K, Al and Fe) was determined by ICP-OES. The content of major anions (SO42-, NO3-, Cl- and F-) was determined by ion-exchange chromatography (IC). Content of major anions and main elements were determined in the precipitation samples (throughfall, stemflow and bulk) as well. Besides computing the basic statistical parameters (mean, median, variance, maximum, minimum, etc.) we also employed other statistical methods such as T-test and ANOVA to assess the differences between beech and spruce vegetation spots. To carry out the temporal variability in the data we used the time series analysis and short-term forecasting by Holt-Winters exponential smoothing and ARIMA models. Our results clearly exhibit differences in the horizontal and spatial distribution of BC. The influences of the study spot, i.e. the influence of stand factors e.g. vegetation covers on BC distribution are well pronounced. The highest amounts of aqueous extractable BC were identified in the F and H organic horizons. The contents of Ca and Mg were significantly higher under beech cover than under spruce cover. The influence of seasonality on BC content and distribution was the strongest in the upper organic horizons. The annual changes are less pronounced in inner mineral B horizons. We have observed a significant influence of the snow melting period - after this event the content of BC was the lowest. In contrast, the BC content rises during the summer period - the time of high biological activity and accelerated organic matter decomposition. This period is again followed by a BC content decrease during the fall period - the time of gradually decreasing biological activity and high precipitation. Generally, we can conclude that the seasonal variations are higher than annual and spatial for both sites.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.H33E1370T
- Keywords:
-
- 0470 BIOGEOSCIENCES / Nutrients and nutrient cycling;
- 0486 BIOGEOSCIENCES / Soils/pedology;
- 1865 HYDROLOGY / Soils