Influence of pore morphology and topology on capillary trapping in geological carbon dioxide sequestration
Abstract
Current carbon capture and storage (CCS) techniques could reduce the release of anthropogenic CO2 into the atmosphere by subsurface sequestration of CO2 in saline aquifers. In geological storage CO2 is injected into deep underground porous formations where CO2 is in the supercritical state. Deep saline aquifers are particularly attractive because of their abundance and potentially large storage volumes. Despite very broad research efforts there are still substantial uncertainties related to the effectiveness of the trapping, dissolution, and precipitation processes controlling the permanent storage of CO2. After injection of CO2 the saline water (brine) will imbibe back and reoccupy the pore space as the CO2 moves upwards, trapping a large part of the CO2. This trapping mechanism is known as capillary trapping and occurs as isolated CO2 bubbles are locked in the brine inside the pores of the porous rock. The large-scale movement of CO2 within the brine is thereby prevented. This mechanism thus constitutes an important storage mechanism after the CO2 injection until the subsequent dissolution trapping and precipitation of carbonate mineral. The capillary trapping of CO2 depends largely on the shape and interconnectivity of the pore space and it is therefore important to study the influence of pore scale morphology and topology to understand and optimize large scale capillary trapping. We use a high pressure set-up, designed for supercritical CO2 conditions, with a flow cell compatible with synchrotron-based X-ray computed micro-tomography (CMT) to generate high-resolution images to study capillary trapping. We use sintered glass bead columns as an approximation for unconsolidated reservoir systems. The smooth surface glass bead data allow us to separate the chemistry and surface roughness effects of the porous medium from the effect of the morphology and topology on the capillary trapping. We will relate these aspects of the pore space to the distribution of the fluids (wetting and non-wetting) and initial and residual non-wetting phase saturations. Potential wettability alteration due to exposure of the beads to supercritical CO2 is also explored by comparing high-pressure and low-pressure experimental results.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.H23D1393A
- Keywords:
-
- 1859 HYDROLOGY / Rocks: physical properties;
- 5112 PHYSICAL PROPERTIES OF ROCKS / Microstructure;
- 5114 PHYSICAL PROPERTIES OF ROCKS / Permeability and porosity;
- 5139 PHYSICAL PROPERTIES OF ROCKS / Transport properties