Iron Sulfide as a Sustainable Reactive Material for Permeable Reactive Barriers
Abstract
Permeable reactive barriers (PRBs) are gaining acceptance for groundwater remediation, as they operate in situ and do not require continuous energy input. The majority of PRBs use zero-valent iron (ZVI). However, some ZVI PRBs have hydraulically failed [1,2], due to the fact that ZVI may reduce not only contaminants but also water and non-contaminant solutes. These reactions may form precipitates or gas phases that reduce permeability. Therefore, there is a need to assess the hydraulic suitability of possible alternatives, such as iron sulfide (FeS). The capability of FeS to remove both metals and halogenated organics from aqueous systems has been demonstrated previously [3,4], and FeS formed in situ within a ZVI PRB has been linked to contaminant removal [5]. These results suggest possible applications in groundwater remediation as a permeable reactive barrier (PRB) material. However, the propensity of FeS for permeability loss, due to solids and gas production, must be evaluated in order to address its suitability for PRBs. The reduction in permeability for FeS-coated sands under the anoxic conditions often encountered at contaminated groundwater sites was examined through column experiments and geochemical modeling under conditions of high calcium and nitrate, which have been previously shown to cause significant permeability reduction in zero-valent iron (ZVI) systems [6]. The column experiments showed negligible production of both solids and gases. The geochemical model was used to estimate solid and gas volumes generated under conditions of varying FeS concentration. Then, the Kozeny-Carman equation and a power-law relationship was used to predict permeability reduction, with a maximum reduction in permeability of 1% due to solids and about 30% due to gas formation under conditions for which a complete loss of permeability was predicted for ZVI systems. This difference in permeability reduction is driven by the differences in thermodynamic stability of ZVI and FeS in aqueous solutions. The results suggest that geochemical conditions that result in high permeability losses for ZVI systems will necessarily not be problematic, from a permeability perspective, for FeS-based reactive materials. Therefore, this research represents an important advance for sustainable groundwater remediation. References: [1] Mushovic, P., Bartlett, T. R., Morrison, S. (2006) Tech. News & Trends 23, 1-3. [2] Kiilerich, O., Larsen, J. W., Nielsen, C., Deigaard, L. D. (2000) In: Wickramanayake, G.B., et al. (Eds.), Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds, Battelle Press, Columbus, OH, 377-384. [3] Han, Y., Gallegos, T. J., Demond, A. H., Hayes, K. F. (2011) Water Res. 45(2), 593-604. [4] Jeong, H. Y. and Hayes, K. F. (2007) Environ. Sci. Technol. 41(18), 6390-6396. [5] Beak, D. G. and Wilkin, R. T. (2009) J. Contam. Hydrol. 106(1-2), 15-28. [6] Henderson, A. D. and Demond, A. H. (2007) Environ. Eng. Sci. 24(4), 401-423.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.H21I1307H
- Keywords:
-
- 1009 GEOCHEMISTRY / Geochemical modeling;
- 1831 HYDROLOGY / Groundwater quality;
- 4329 NATURAL HAZARDS / Sustainable development