Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico
Abstract
A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed direction of inter-meander hyporheic flow.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.H11D1223C
- Keywords:
-
- 1830 HYDROLOGY / Groundwater/surface water interaction