International Collaboration in the field of GNSS-Meteorology and Climate Monitoring
Abstract
International collaboration in the field of GNSS-meteorology and climate monitoring is essential, as severe weather and climate change have no respect for national boundaries. The use of Global Navigation Satellite Systems (GNSS) for meteorological purposes is an established atmospheric observing technique, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is currently under-sampled and obtaining and exploiting more high-quality humidity observations is essential to severe weather forecasting and climate monitoring. A proposed EU COST Action (http://www.cost.eu) will address new and improved capabilities from concurrent developments in both GNSS and atmospheric communities to improve (short-range) weather forecasts and climate projections. For the first time, the synergy of the three GNSS systems, GPS, GLONASS and Galileo, will be used to develop new, advanced tropospheric products, stimulating the full potential exploitation of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time severe weather monitoring and forecasting to climate research. The Action will work in close collaboration with the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN), GNSS Precipitable Water Task Team (TT). GRUAN is a global reference observing network, designed to meet climate requirements and to fill a major void in the current global observing system. GRUAN observations will provide long-term, high-quality data to determine climatic trends and to constrain and validate data from space-based remote sensors. Ground-based GNSS PW was identified as a Priority 1 measurement for GRUAN, and the GNSS-PW TT's goal is to develop explicit guidance on hardware, software and data management practices to obtain GNSS PW measurements of consistent quality at all GRUAN sites. The GRUAN GNSS-PW TT and the proposed COST Action will look to expand the international framework already in place with the European E-GVAP programme to facilitate global collaboration to facilitate knowledge and data exchange.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.G11A0901J
- Keywords:
-
- 0365 ATMOSPHERIC COMPOSITION AND STRUCTURE / Troposphere: composition and chemistry;
- 1220 GEODESY AND GRAVITY / Atmosphere monitoring with geodetic techniques;
- 1225 GEODESY AND GRAVITY / Global change from geodesy