Time Resolved Nucleation and Growth of Monodisperse FeOOH Nanoparticles Observed in situ
Abstract
The nucleation and growth of oxide minerals from aqueous solution is a poorly understood process. Complexities such as two-stage precipitation, phase transformation, and hydrolysis often inhibit simple interpretation. In this study, we track the thermally induced nucleation and growth of akaganeite (β-FeOOH) nanoparticles from FeCl3 solutions, using in situ time resolved small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Variations in reaction temperature (from 37 deg C to 80 deg C) and FeCl3 concentration (from 5 mM to 800 mM) produce systematic changes in nucleation rate, growth rate, particle size distribution, and aspect ratio. Low FeCl3 concentrations and high temperatures lead to formation of very small particles via rapid nucleation. (FeCl3 solutions are actually more supersaturated with respect to akaganeite when concentrations are low, due to the acid-base chemistry of ferric iron.) Increasing the FeCl3 concentration leads to large, highly monodisperse particles via size focused growth. Suspensions of highly monodisperse, elongated particles are found to self-organize into two dimensional colloidal crystals. The well-controlled growth processes in this system make it possible to conduct detailed kinetic modeling, and determine how both nucleation and growth rate respond to changes in the experimental conditions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.B53D0695L
- Keywords:
-
- 1012 GEOCHEMISTRY / Reactions and phase equilibria