Fluxes of ozone and Biogenic Volatile Organic Compounds in a mixed Mediterranean forest over a transition period between summer and fall
Abstract
Mediterranean plant ecosystems are exposed to abiotic stressors that may be exacerbated by climate change dynamics. Moreover, plants need now to cope with increasing anthropogenic pressures, often associated with expanding impacts of urbanization. Anthropogenic stressors include harmful gases (e.g. ozone,) that are transported from anthropogenic pollution sources to the vegetation. They may alter ecophysiology and compromise metabolism of Mediterranean plants. A disproportionate number of Mediterranean ecosystems, many dominated by forest trees, are being transformed into "urban or pre-urban forests". This is in particular the case for Castelporziano Estate, a 6,000 ha Mediterranean forest located just 25 km from Rome downtown at the coast of the Mediterranean Sea. In September 2011 an intensive field campaign was performed in Castelporziano to investigate ozone deposition and biogenic emissions of volatile organic compounds (BVOC) from a mixed Mediterranean forest, mainly composed by Quercus suber, Quercus ilex, Pinus pinea. Measurements were performed at canopy level with fast real-time instruments (a fast ozone analyzer and a Proton Transfer Reaction-Time of Flight Mass Spectrometer) that allowed eddy covariant flux measurements of ozone and BVOC. In the transitional period from a warm and dry summer to a wet and moderately cool fall we typically observed tropospheric ozone volume mixing ratios (VMR) of 60 ppb at around noon, with high deposition fluxes (up to -10 nmol m-2 s-1) into the forest canopy. Canopy models were used to to calculate that up to 90% of ozone uptake can be attributed to non-stomatal sinks, suggesting that chemical reactions between ozone and reactive BVOC may have played an important role. The concentrations of reactive isoprenoids (e.g. sesquiterpenes) were indeed observed to decrease during the central hours of the day, in coincidence with increased ozone concentrations. Concentrations and fluxes of isoprenoid-ozone-oxidation-(methyl-vinyl-ketone and methacrolein) were found to increase during the day time hours, matching the dynamic pattern of non-stomatal ozone uptake. Monoterpenes were the most abundant BVOC emitted by the forest with fluxes up to 10 nmol m-2 s-1 in the warm days, followed by the oxygenated BVOCs: methanol, acetone, acetaldehyde. Isoprene was emitted at a low rate (less than 1 nmol m-2 s-1), and observations used to develop a new parameterization data for modelling activity. MEGAN was used to predict biogenic emissions from Mediterranean ecosystems. Model results using new basal emission factors (BEF) estimated from the collected data-set revealed considerable differences in the emission estimates compared with the standard parameterization, thus suggesting the importance of including basal emission factors from monoterpene-emitting Mediterranean ecosystems to obtain an accurate estimate in the global model. Future research by chemical transport modelling and smog chamber experiments are planned to investigate the "ex-situ" ozone-forming potential of emitted BVOC, to fully understand the role of Mediterranean urban forests in the complex interactions between biosphere and atmosphere over large Mediterranean conurbations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.B51E0601F
- Keywords:
-
- 0400 BIOGEOSCIENCES;
- 0426 BIOGEOSCIENCES / Biosphere/atmosphere interactions;
- 0476 BIOGEOSCIENCES / Plant ecology