Continuous field measurement of N2O isotopologues using FTIR spectroscopy following 15N addition
Abstract
Anthropogenic additions of fertilizer nitrogen (N) have significantly increased the mole fraction of nitrous oxide (N2O) in the troposphere. Tracking the fate of fertilizer N and its transformation to N2O is important to advance knowledge of greenhouse gas emissions from soils. Transport and transformations are frequently studied using 15N labeling experiments, but instruments capable of continuous measurements of 15N-N2O at the surface of soil have only recently come to the fore. Our primary aim was to quantify emissions of N2O and the fraction of 15N emitted as N2O from an agricultural soil following 15N addition using a mobile Fourier Transform Infrared (FTIR) spectrometer. We set up a short-term field experiment on a coastal floodplain site near Nowra, New South Wales. We deployed an automated chamber system connected to a multi-pass cell (optical pathlength 24 m) and low resolution FTIR spectrometer to measure fluxes of all N2O isotopologues collected from five 0.25 m2 chambers every three hours. We measured N2O fluxes pre and post-application of 15N-labeled substrate as potassium nitrate (KNO3) or urea [CO(NH2)2] to the soil surface. Root mean square uncertainties for all isotopologue measurements were less than 0.3 nmol mol-1 for 1 minute average concentration measurements, and minimum detectable fluxes for each isotopologue were <0.1 ng N m-2 s-1. Emissions of all N2O isotopologues were evident immediately following 15N addition. Emissions of 14N15NO, 15N14NO and 15N15NO isotopologues subsided within 10 d, but 14N14NO fluxes were evident over the entire experiment. The figure provides an overview of the emissions. Cumulative 15N-N2O fluxes (sum of the three 15N isotopologues) per chamber for the 14 days following 15N addition ranged from 1.5 to 10.3 mg 15N-N2O m-2. The chambers were destructively sampled after 2 weeks and 15N analyzed in soil and plant material using isotope ratio mass spectrometry. Approximately 1% (range 0.7 - 1.9%) of the total amount of 15N applied was emitted as N2O. Average fractions of 15N recovered in soil, root, shoot, and microbial biomass pools varied between trials but were approximately 0.4, 0.08, 0.1 and 0.03, respectively. The results indicate that the portable FTIR spectroscopic technique can effectively trace transfer of 15N to the atmosphere as N2O after 15N addition, allowing for powerful quantification of N2O emissions under field conditions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.B51B0534P
- Keywords:
-
- 0402 BIOGEOSCIENCES / Agricultural systems;
- 0452 BIOGEOSCIENCES / Instruments and techniques;
- 0454 BIOGEOSCIENCES / Isotopic composition and chemistry;
- 0469 BIOGEOSCIENCES / Nitrogen cycling