Community Response to a Heavy Precipitation Event in High Temperature, Chemosynthetic Biofilms and Sediments
Abstract
Coordinated analysis of the "Bison Pool" (BP) Environmental Genome and a complementary contextual geochemical dataset of ~75 parameters revealed biogeochemical cycling and metabolic and microbial community shifts in a Yellowstone National Park hot spring ecosystem (1). The >22m outflow of BP is a gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of nutrients. Microbial life at BP transitions from a 92°C chemosynthetic community in the BP source pool to a 56°C photosynthetic mat community. Metagenomic data at BP showed the potential for both heterotrophic and autotrophic carbon metabolism (rTCA and acetyl-CoA cycles) in the highest temperature, chemosynthetic regions (1). This region of the outflow is dominated by Aquificales and Pyrococcus relatives, with smaller contributions of heterotrophic Bacteria. Following a 2h heavy precipitation event we observed an influx of exogenous organic material into the source pool supplied from the meadow surrounding the BP area. We sampled biomass and fluid at several locations within the outflow immediately following the event, and on several occasions for the next eight days. Elemental analysis and carbon and nitrogen isotopic analyses were conducted on biomass and sediment, and dissolved organic and inorganic carbon content and δ13C of fluids were analyzed. DNA and RNA were extracted, and following RT-PCR, nitrogen cycle functional gene expression was evaluated. Previous work at BP has shown that chemosynthetic biomass may carry isotopic signatures of fractionation during carbon fixation, via the acetyl-CoA and rTCA cycles (2). However, the addition of exogenous organic carbon during the rain event had an immediate and dramatic effect on the sediments and biofilms in the chemosynthetic zone of the outflow. Dissolved organic carbon was the highest measured in six years. Chemosynthetic biomass responded by incorporating the organic carbon. Carbon isotopic signatures in chemosynthetic biomass at "Bison Pool" have been previously measured at ~ -4‰ (2). However, immediately following the event, carbon in biomass was measured at ~ -25‰ (values similar to local soil and bison excrement). Biomass closest to the source of "Bison Pool" returned to ~ -4‰ within a few days, but biomass ~ 3m downstream was still ~ -14‰ eight days after the event. Carbon isotopic signatures of the dissolved inorganic carbon (DIC) were depleted relative to values measured in 2005-2009, possibly a result of a combination of added DIC in rain and heterotrophic waste produced using the exogenous depleted carbon; this depleted DIC persisted for the full study period. These results suggest that a shift from autotrophic to heterotrophic metabolism may occur following every significant precipitation event at BP, and support previous observations concerning potential periodic eutrophic conditions in this ecosystem (3). 1 Swingley, W.D. et al., PLoS ONE, 7(6): e38108. 2 Havig et al., 2011. JGR Biogeosciences, 116, G01005. 3 Loiacono, S.T. et al., 2012. EM, 14(5): 1272-1283.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.B43L..06M
- Keywords:
-
- 0448 BIOGEOSCIENCES / Geomicrobiology;
- 0450 BIOGEOSCIENCES / Hydrothermal systems;
- 0456 BIOGEOSCIENCES / Life in extreme environments