The Effects of Microbial Surfaces on Mineral Trapping
Abstract
Geologic carbon sequestration, the underground storage of CO2, will be an essential component of global climate change mitigation. Carbonate minerals are a stable form of CO2 storage, but their geologic formation is slow. Many microbes are known to affect carbonate mineral formation; however the mechanisms of such mineralization are largely unknown. Suggested mechanisms include metabolic processes that alter pH and supersaturation, as well as cell surface properties that induce mineral nucleation. This work systematically investigates how diverse bacterial surface alter the rates and transformations of calcium carbonate (CaCO3). Under low supersaturation conditions, several diverse species accelerated the formation of CaCO3 relative to silicate containing solutions. These rate changes also occurred for metabolically inactive bacteria, indicating that metabolic activity was not the operating mechanism. Rather, since the number of CaCO3 crystals increased in number as the cell density increased, these results indicate that many bacterial species accelerate the nucleation of CaCO3. Bacterial surface charge and cation binding was assessed using zeta potential measurements and correlated to the bacterial surface chemistry and biomineralization experiments with varying Ca2+ concentrations. To understand the role of specific biomolecules on nucleation, we engineered surface layer proteins (S-layers) to affect their charge and displayed functional groups. From these results combined, we postulate that microbial surfaces can selectively attract Ca2+ ions, serving as nucleation sites for CaCO3, thereby accelerating crystal formation. These observations provide substantive evidence for a non-specific nucleation mechanism, and stress the importance of microbes, on the rate of formation of carbonate minerals. This work also indicates that additional microbial engineering specifically targeted to S-layer proteins could optimize these interactions and be used to implement the sequestration of CO2 as stable mineral carbonates on an accelerated timescale.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.B43B0390A
- Keywords:
-
- 0419 BIOGEOSCIENCES / Biomineralization;
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0463 BIOGEOSCIENCES / Microbe/mineral interactions