Does wildfire cause cascading effects on aquatic C cycling? A study of soil, well and lake DOC composition and bio/photolability
Abstract
In May 2011 a wildfire broke out north of Utikuma Lake in central Alberta, Canada, which eventually burned an area of ~880 km2. Wildfire alters soil properties, potentially altering the chemical composition of terrestrial DOC that reaches downstream aquatic environments. In order to study the potential effects of wildfire on lake carbon cycling, we sampled and incubated DOC from soil samples (n=52), wells (n=35) and lakes (n=32) from within and outside the recent fire perimeter. We incubated the DOC samples under both dark and UV conditions to assess both bio- and photolability, and followed DOC composition throughout the incubations by measuring DOC absorbing and fluorescing properties. A strong effect of wildfire was found among DOC samples leached from surface peatland and upland soils - with fire yielding increased DOC aromaticity associated with decreased biodegradability but also increased photolability. Parallel factor analysis of fluorescence matrices revealed distinct regions that were associated with DOC leached from charred soils, potentially linked to their lower biodegradability. Dark and UV conditions gave rise to very different trajectories of changes to DOC composition throughout incubations, with preferential losses of non-aromatic DOC under dark conditions and aromatic DOC under UV conditions. The DOC composition index that was found to best predict both DOC bio- and photolability was specific UV absorbance, which is also a very simple and quick index to measure. For lakes, we found that the primary influences on DOC composition and bio-/photolability was linked to lake size and hydrogeological setting (whether located on a lacustrine clay plain or in a moraine/outwash region) that controls groundwater influence and the hydrological connectivity to adjacent peatlands. Further analysis of well and lake water incubations will be used to detect whether wildfire can be detected to have a subtle secondary effect on DOC composition and lability or if the potential for cascading effects on lake C cycling due to altered soil DOC sources remain unrealized in the study region.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.B41D0314O
- Keywords:
-
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0458 BIOGEOSCIENCES / Limnology;
- 0497 BIOGEOSCIENCES / Wetlands;
- 1630 GLOBAL CHANGE / Impacts of global change