Effect of invader litter chemistries on soil organic matter compositions: consequences of Polygonum cuspidatum and Pueraria lobata invasions
Abstract
Carbon fixation during photosynthesis forms the precursor of all organic carbon in soil and the predominant source of energy that drives soil microbial processes; hence the molecular identity of the fixed carbon could influence the formation of soil organic matter (SOM). Due to their high resource acquisition and resource use efficiencies, some invasive plants can input disproportionately high quantities of litter that are qualitatively distinctive, and this could influence the accrual of organic carbon and overall carbon cycling in invaded habitats. Hence, we hypothesized that invasive plants with unique litter chemistries would significantly influence the overall carbon cycling in the invaded soils. We tested this hypothesis by comparing plants exhibiting recalcitrant vs. labile litter chemistries using japanese knotweed (Polygonum cuspidatum) and kudzu (Pueraria lobata), respectively. Japanese knotweed produces low litter abundant in polyphenols which selectively hinders microbially mediated decomposition and re-synthesis; whereas kudzu produces low C:N, high quality litter that can stimulate microbial decomposition. Soil samples were collected at 5-cm intervals and from inside and outside 15 to 20 year old stands of the invasive species. The novelty of our study was that both of our study species were invading into soils of contrasting substrate qualities relative to the invading litter quality. The molecular composition of carbon in the soils and the degradation stage of the SOM were assessed with a biomarker approach using gas chromatography-mass spectrometry to determine the source of biomolecules (plant or microbes). Stability of SOM fractions was assessed through oxidation with hydrogen peroxide, serving as a proxy of biological degradation, followed by stable isotope analysis. Fungal communities dominated the uppermost soils under knotweed whereas kudzu litter suppressed fungal biomass in the top 10-cm. In constrast, increase in active microbial biomass C was observed under kudzu for all depths while it was suppressed at the top soil of knotweed invasion. Principal component analyses on biomarkers revealed a convergence of soils under knotweed and kudzu, based on profiles of lignin derived phenolics, cutin derived long chain n-alkanoic acid, and plant or microbe derived steroids. Knotweed soil was consisted of higher concentration of higher plant wax derived long chain alkanoic acid, phenolics (ferulic and p-coumaric acid), and both microbe (ergosterol) and plant (campesterol) derived steroids. Kudzu soil was characterized by lower lignin monomers and long-chain plant derived alkanoic acid, suggesting rapid litter decomposition. Increase in δ13C (%) after hydrogen peroxide treatment indicated difference in degradation pattern among biochemical components varying in natural abundance. In conclusion, molecular level characterization of the soil has a potential to link the organic matter composition to the estimated stability. These results indicate that both invaders can significantly influence the molecular-level characteristics of carbon accrued in soils by producing a high biomass of litter.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.B41A0263T
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0428 BIOGEOSCIENCES / Carbon cycling