Management and Climate Controls on Fire Trends in the Continental United States
Abstract
Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by forest fires in both scale and in the resources invested for management. Here we quantified decadal trends, interannual variability, and seasonality of satellite observations of active fires as a function of management type in the continental U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity Database (MTBS) to identify the location of large wildland fires and the MODIS Land Cover Type Product (MCD12Q1) to identify agricultural burning in croplands. A third class of fires, defined as prescribed or other fires included all residual fires not attributed to wildland or cropland fire types. Wildland fires dominated the interannual variation for U.S. active fires; however, there were no significant trends by region over the last decade. Agricultural and other/prescribed fires were responsible for 70% of total active fires, 50% of which were in the south and southeastern United States where contributions from wildland fires was relatively small. In the west, agricultural fires had a decreasing trend at a rate of 6% per year, mainly during the harvest season of October. Except for the west, prescribed fires were in-phase with agricultural fires on both seasonal and interannual timescales, possibly reflecting the similar management strategies. We also performed correlation analysis between fires and potential evapotranspiration (PE) to examine how climate controls varied by fire type. While climate is the dominant factor for wildland fires, agricultural and other non-wildland fires show no direct relationship to PE. Our result suggests that by targeting agricultural and prescribed fire management, there is potential to significantly reduce landscape fire emissions within the U.S., despite expected changes in climate over the next several decades. The trends (p < 0.01) in annual active fire detections across the continental U.S. as a function of fire types during 2001-2010. ;
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.B23F0519L
- Keywords:
-
- 0402 BIOGEOSCIENCES / Agricultural systems;
- 0426 BIOGEOSCIENCES / Biosphere/atmosphere interactions;
- 4315 NATURAL HAZARDS / Monitoring;
- forecasting;
- prediction;
- 4337 NATURAL HAZARDS / Remote sensing and disasters