Temperature sensitivity of DOC production and transformation in organic soils of the Yukon River Basin, Alaska
Abstract
The flux of dissolved organic carbon (DOC) from terrestrial to aquatic ecosystems represents a critical component of the high-latitude carbon balance. In the Yukon River basin (YRB), DOC fluxes have declined in recent decades, likely in response to regional permafrost thaw and increased groundwater discharge to river flow. Despite improved flux estimates for many arctic rivers, considerable uncertainty exists regarding the potential response of DOC fluxes to projected warming. To improve estimates of future DOC dynamics, it is important to develop a process-based approach whereby empirical constraints are placed on source and sink terms in both soil and river systems. Here, we examine variability in DOC production and microbially mediated transformations as a function of both temperature and organic matter (OM) composition in soils of the YRB. We conducted "tea" experiments by incubating three organic-soil types that vary with depth and decomposition extent (live/dead moss, fibric OM and humic OM) at two temperatures (4 vs. 20 °C). Leachate samples were collected periodically over a 30-day incubation and characterized for DOC concentration, optical properties (specific UV absorbance at 254 nm or SUVA254, fluorescence), and major chemical fractions using XAD8/XAD4 resins. We observed a non-linear increase in DOC production over time, characterized by a rapid initial release of DOC from soils followed by a slower rise in DOC concentration in subsequent weeks. Mean DOC concentration was described by a significant interaction between organic-soil type and temperature, indicating a strong relationship between temperature sensitivity of net DOC production and the decomposition extent of soil OM. On average across all sampling dates, DOC concentrations were highest in leachate from fibric OM (13.4 to 17.8 mgC L-1), and lowest in leachate from humic OM (3.5 to 8.5 mgC L-1). However, the temperature sensitivity of net DOC production was highest in the humic OM treatment, with mean DOC concentrations increasing by 145% between the 4 and 20°C temperature treatments, whereas DOC concentrations in leachate from fibric OM only increased by 33%. We also observed compositional differences in dissolved organic matter (DOM) across experimental treatments and over time, as reflected by UV absorbance and fluorescence measurements. For instance, mean SUVA254 values increased from near-surface soil (live/dead moss = 2.28 ± 0.27 L mgC m-1) to deeper organic horizons (humic OM = 3.86 ± 0.60 L mgC m-1). SUVA254 also increased over time, suggesting selective mineralization of low-molecular weight compounds and enrichment of the aromatic DOM pool. Together, these data help to distinguish vertical differences in DOM origin and composition through soil profiles, and can be used to track the fate of terrestrial DOC under future warming at high latitudes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.B21E0425O
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0439 BIOGEOSCIENCES / Ecosystems;
- structure and dynamics;
- 1615 GLOBAL CHANGE / Biogeochemical cycles;
- processes;
- and modeling