Evaluating the Performance of the Goddard Multi-Scale Modeling Framework with Different Cloud Microphysical Schemes
Abstract
The accurate representation of clouds and cloud processes in atmospheric general circulation models (GCMs) with relatively coarse resolution (~100 km) has been a long-standing challenge. With the rapid advancement in computational technology, new breed of GCMs that are capable of explicitly resolving clouds have been developed. Though still computationally very expensive, global cloud-resolving models (GCRMs) with horizontal resolutions of 3.5 to 14 km are already being run in an exploratory manner. Another less computationally demanding approach is the multi-scale modeling framework (MMF) that replaces conventional cloud parameterizations with a cloud-resolving model (CRM) in each grid column of a GCM. The Goddard MMF is based on the coupling of the Goddard Cumulus Ensemble (GCE), a CRM model, and the GEOS global model. In recent years a few new and improved microphysical schemes are developed and implemented to the GCE based on observations from field campaigns. It is important to evaluating these microphysical schemes for global applications such as the MMFs and GCRMs. Two-year (2007-2008) MMF sensitivity experiments have been carried out with different cloud microphysical schemes. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against TRMM, CloudSat and CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to evaluate the performance of different cloud microphysical schemes. We will assess the strengths and/or deficiencies in of these microphysics schemes and provide guidance on how to improve them for future GCRM application.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.A54B..07C
- Keywords:
-
- 3314 ATMOSPHERIC PROCESSES / Convective processes;
- 3337 ATMOSPHERIC PROCESSES / Global climate models;
- 3354 ATMOSPHERIC PROCESSES / Precipitation;
- 3371 ATMOSPHERIC PROCESSES / Tropical convection