Evaluating Sources of Chemical Pathways of Aerosol Production on the Southern Ute Indian Reservation and Navajo Nation using Isotopic and Geochemical Analysis
Abstract
Increase emissions of nitrogen oxides (NOx) as a result of the development of oil, gas and coal resources in the Four Corners region of the United States have caused concern for area American Indian tribes that levels of ozone, acid rain, and aerosols or particulate matter (PM) may increase on reservation lands. NOx in the atmosphere plays an important role in the formation of these pollutants and high levels are indicators of poor air quality and exposure to them has been linked to a host of human health effects and environmental problems facing today's society. Nitrogen oxides are eventually oxidized in the atmosphere to form nitric acid and particulate nitrate which falls to earth's surface by way of dry or wet deposition. In the end, it is the removal of NOx from the atmosphere by chemical conversion to nitrate that halts this production of oxidants, acid, and aerosols. Despite the importance of understanding atmospheric nitrate production there remains major deficiencies in estimating the significant key reactions that transform atmospheric NOx. This project will examine the chemical composition (Cl-, NO3-, SO42-) and stable isotope composition (N15, O17, O18, Δ17O) of aerosols (PM2.5-PM10) collected on the Southern Ute Indian Reservation and Navajo Nation to provide insight into the sources of NOx and the oxidation pathways that convert NOx into nitrate on these reservation lands.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.A53N0339K
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles