Influence Of Relative Humidity On Light Scattering Measurements Of Aerosols Using A Humidifier-Dryer Nephelometer
Abstract
Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties, as well as the water content and lifetime of clouds. In atmosphere conditions, aerosol particles experience hygroscopic growth due to the relative humidity (RH) influence. Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observation with other optical aerosol measurements techniques such satellite retrieval and photometry as well as for climate forcing calculations. A humidifier-dryer system for a TSI 3563 Nephelometer was designed and built in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Regular measurements at UMBC (University Of Maryland, Baltimore County) with ambient and lab-generated aerosols have been taking place to study the hygroscopic properties of the aerosols in the region. The aerosols have been humidified as high as 95.4% and the measured σsp(λ) were on average more than two times greater than those at low RH. Another important parameter used to evaluate the hygroscopic properties of aerosols is the enhancement factor f(λ,RH) which is defined as the σsp(λ,RH) at any specified RH divided by the dry σsp(λ,DRY). Initial results indicates that the enhancement factor for ambient aerosols in the region is f(550,94%) =1.35. Enhancement factor for defined sodium chloride (NaCl) and ammonium sulfate ((NH4)2SO4) particles were also measured obtaining; f(84%) =1.93 and f(81%)=5.67 respectively.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.A53I0258O
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles;
- 0360 ATMOSPHERIC COMPOSITION AND STRUCTURE / Radiation: transmission and scattering;
- 3394 ATMOSPHERIC PROCESSES / Instruments and techniques