Light Absorption by Secondary Organic Aerosol Produced from Aqueous Reaction of Phenols with an Organic Excited Triplet State and Hydroxyl Radical
Abstract
Although reactions in atmospheric condensed phases can form and transform secondary organic aerosol (SOA), these reactions are not well represented in many air quality models. Previous experiments have focused on hydroxyl radical-mediated oxidation of low molecular weight precursors such as gyloxal and methylglyoxal. In our work we are examining aqueous SOA formed from phenols, which are emitted from biomass burning and formed from the oxidation of anthropogenic aromatics such as benzene and toluene. In this work we examine aqueous SOA production from oxidation of three phenols (phenol, guaiacol, syringol) and three benzene-diols (catechol, resorcinol, 1,4-hydroquinone) by hydroxyl radical (OH) and the triplet excited state of 3,4-dimethoxybenzaldehyde (DMB). Our focus is on light absorption by the reaction products, which we characterized by measuring UV-Vis spectra and calculating mass absorption coefficients. To understand the elemental and molecular composition of the SOA, we also analyzed the samples with high resolution mass spectrometry and infrared spectroscopy. Our results indicate that aqueous oxidation of phenols and benzene-diols via OH and triplet excited states efficiently produce SOA that is highly absorbing in the UV-A wavelengths, consists of both small and large molecular weight products, and is highly oxidized.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.A43D0174S
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles;
- 0317 ATMOSPHERIC COMPOSITION AND STRUCTURE / Chemical kinetic and photochemical properties;
- 0365 ATMOSPHERIC COMPOSITION AND STRUCTURE / Troposphere: composition and chemistry