Simulating the Contributions from Aircraft Emissions to Organic Aerosols Using the Volatility Basis Set
Abstract
Regional air quality studies aimed at quantifying the impacts of aviation emissions to PM2.5 have generally predicted relatively low contributions from organic aerosols. However, recent sampling and smog chamber experiments have suggested that organic aerosols comprise a significant fraction of total PM2.5 formed from aircraft emissions. In this study, the results of aircraft-specific sampling and smog chamber experiments are incorporated into a regional chemical transport model with the volatility basis set and used to predict organic aerosol contributions from aircraft emissions. Contributions of aircraft emissions to primary organic aerosols (POA), secondary organic aerosols (SOA) formed from traditional precursors (e.g. aromatics and long-chain alkanes), and non-traditional SOA formed from unidentified precursors previously unaccounted for in air quality models are modeled using the volatility basis set approach in CMAQ v4.7.1. The model includes oxidation reactions of traditional SOA (both biogenic and anthropogenic) and non-traditional SOA precursors (specific to aircraft emissions) with OH to produce products of lower volatility. Non-traditional SOA yields and precursor emission estimates for idle and non-idle aircraft activities are based on sampling and smog chamber experiments. This model predicts the organic aerosol and total PM2.5 concentrations formed from aircraft emissions due to landing and takeoff activities at the Hartsfield-Jackson International Airport in Atlanta during January and July, 2002. Overall model results are compared against monitoring data in the region to determine the impacts of using the volatility basis set on CMAQ model performance.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.A41B0011W
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles;
- 3355 ATMOSPHERIC PROCESSES / Regional modeling