The impact of mineral dust on regional tropical circulation
Abstract
Dust aerosols from the West Asian and African subtropical deserts likely play an important role in regional low-latitude circulation patterns. These aerosols both absorb solar and terrestrial radiation and reflect solar radiation and therefore both cool the surface and warm the lower troposphere. Since the distribution of dust is spatially non-uniform, its cooling/heating effect could significantly disturb regional temperature and pressure fields and affect tropical circulation patterns, including the Hadley and Walker Cells, as well as the Monsoon Circulation. Here, we investigate the direct radiative effect of desert dust on the circulation over the Middle East and North Africa (MENA) and South Asia regions using the high-resolution atmospheric general circulation model (HiRAM) developed at the NOAA Geophysical Fluid Dynamics Laboratory. We conducted simulations with and without dust aerosols with a spatial resolution of 25 km globally, which allowed investigation of the regional features of the tropical circulations and their interactions with global-scale processes. Our analysis of the 200 hPa velocity potential indicated that mineral dust increased the strength of the Hadley Cell. In general, the Hadley, Walker, and Monsoon circulations over the African continent and East Atlantic were intensified by the dust effect, whereas we observed the opposite response over the Pacific. An anomalous strengthening of the wind convergence at the northern border of the Hadley cell over the African continent and in the East Atlantic, especially in the summer, became evident from our simulations. We found that dust aerosols play an important role in the formation of the climate and circulation regimes over MENA and South Asia, suggesting that they should be accounted for in future climate projections.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.A33D0187B
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles;
- 1620 GLOBAL CHANGE / Climate dynamics;
- 1637 GLOBAL CHANGE / Regional climate change