Subspace Expanders and Matrix Rank Minimization
Abstract
Matrix rank minimization (RM) problems recently gained extensive attention due to numerous applications in machine learning, system identification and graphical models. In RM problem, one aims to find the matrix with the lowest rank that satisfies a set of linear constraints. The existing algorithms include nuclear norm minimization (NNM) and singular value thresholding. Thus far, most of the attention has been on i.i.d. Gaussian measurement operators. In this work, we introduce a new class of measurement operators, and a novel recovery algorithm, which is notably faster than NNM. The proposed operators are based on what we refer to as subspace expanders, which are inspired by the well known expander graphs based measurement matrices in compressed sensing. We show that given an $n\times n$ PSD matrix of rank $r$, it can be uniquely recovered from a minimal sampling of $O(nr)$ measurements using the proposed structures, and the recovery algorithm can be cast as matrix inversion after a few initial processing steps.
 Publication:

arXiv eprints
 Pub Date:
 February 2011
 arXiv:
 arXiv:1102.3947
 Bibcode:
 2011arXiv1102.3947K
 Keywords:

 Computer Science  Information Theory