Quantum memory coupled to cavity modes
Abstract
Inspired by spin-electric couplings in molecular magnets, we introduce in the Kitaev honeycomb model a linear modification of the Ising interactions due to the presence of quantized cavity fields. This allows to control the properties of the low-energy toric code Hamiltonian, which can serve as a quantum memory, by tuning the physical parameters of the cavity modes, like frequencies, photon occupations, and coupling strengths. We study the properties of the model perturbatively by making use of the Schrieffer-Wolff transformation and show that, depending on the specific setup, the cavity modes can be useful in several ways. They allow to detect the presence of anyons through frequency shifts and to prolong the lifetime of the memory by enhancing the anyon excitation energy or mediating long-range anyon-anyon interactions with tunable sign. We consider both resonant and largely detuned cavity modes.
- Publication:
-
Physical Review B
- Pub Date:
- March 2011
- DOI:
- arXiv:
- arXiv:1011.3762
- Bibcode:
- 2011PhRvB..83k5415P
- Keywords:
-
- 75.10.Jm;
- 42.60.Da;
- 03.67.Pp;
- 05.30.Pr;
- Quantized spin models;
- Resonators cavities amplifiers arrays and rings;
- Quantum error correction and other methods for protection against decoherence;
- Fractional statistics systems;
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Quantum Physics
- E-Print:
- 16 pages, 6 figures