In-plane vibration analysis of curved carbon nanotubes conveying fluid embedded in viscoelastic medium
Abstract
The effect of the induced vibrations in the carbon nanotubes (CNTs) arising from the internal fluid flow is a critical issue in the design of CNT-based fluidic devices. In this study, in-plane vibration analysis of curved CNTs conveying fluid embedded in viscoelastic medium is investigated. The CNT is modeled as a linear elastic cylindrical tube where the internal moving fluid is characterized by steady flow velocity and mass density of fluid. A modified-inextensible theory is used in formulation and the steady-state initial forces due to the centrifugal and pressure forces of the internal fluid are also taken into account. The finite element method is used to discretize the equation of motion and the frequencies are obtained by solving a quadratic eigenvalue problem. The effects of CNT opening angle, the elastic modulus and the damping factor of the viscoelastic surrounded medium and fluid velocity on the resonance frequencies are elucidated. It is shown that curved CNTs are unconditionally stable even for a system with sufficiently high flow velocity. The most results presented in this investigation have been absent from the literature for fluid-induced vibration of curved CNTs embedded in viscoelastic foundations.
- Publication:
-
Physics Letters A
- Pub Date:
- May 2011
- DOI:
- 10.1016/j.physleta.2011.03.025
- Bibcode:
- 2011PhLA..375.1994G