AGT conjecture and integrable structure of conformal field theory for c=1
Abstract
AGT correspondence gives an explicit expressions for the conformal blocks of d=2 conformal field theory. Recently an explanation of this representation inside the CFT framework was given through the assumption about the existence of the special orthogonal basis in the module of algebra A=Vir⊗H. The basis vectors are the eigenvectors of the infinite set of commuting integrals of motion. It was also proven that some of these vectors take form of Jack polynomials. In this note we conjecture and verify by explicit computations that in the case of the Virasoro central charge c=1 all basis vectors are just the products of two Jack polynomials. Each of the commuting integrals of motion becomes the sum of two integrals of motion of two noninteracting Calogero models. We also show that in the case c≠1 it is necessary to use two different FeiginFuks bosonizations of the Virasoro algebra for the construction of all basis vectors which take form of one Jack polynomial.
 Publication:

Nuclear Physics B
 Pub Date:
 September 2011
 DOI:
 10.1016/j.nuclphysb.2011.04.014
 arXiv:
 arXiv:1102.0343
 Bibcode:
 2011NuPhB.850..199B
 Keywords:

 High Energy Physics  Theory
 EPrint:
 16 pages, added references, corrected typos