The Polar Cusp Observed by Cluster Under Constant Imf-Bz Southward
Abstract
The Earth's magnetic field is influenced by the interplanetary magnetic field (IMF), specially at the magnetopause where both magnetic fields enter in direct contact and magnetic reconnection can be initiated. In the polar regions, the polar cusp that extends from the magnetopause down to the ionosphere is also directly influenced. The reconnection not only allow ions and electrons from the solar wind to enter the polar cusp but also give an impulse to the magnetic field lines threading the polar cusp through the reconnection electric field. A dispersion in energy of the ions is subsequently produced by the motion of field lines and the time-of-flight effect on down-going ions. If reconnection is continuous and operates at constant rate, the ion dispersion is smooth and continuous. On the other hand if the reconnection rate varies, we expect interruption in the dispersion forming energy steps or staircase. Similarly, multiple entries near the magnetopause could also produce steps at low or mid-altitude when a spacecraft is crossing subsequently the field lines originating from these multiple sources. Cluster with four spacecraft following each other in the mid-altitude cusp can be used to distinguish between these "temporal" and "spatial" effects. We will show two Cluster cusp crossings where the spacecraft were separated by a few minutes. The energy dispersions observed in the first crossing were the same during the few minutes that separated the spacecraft. In the second crossing, two ion dispersions were observed on the first spacecraft and only one of the following spacecraft, about 10 min later. The detailed analysis indicates that these steps result from spatial structures.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMSM51B2084E
- Keywords:
-
- 2706 MAGNETOSPHERIC PHYSICS / Cusp;
- 2723 MAGNETOSPHERIC PHYSICS / Magnetic reconnection