Solar Energetic Particles Trapping in the Magnetosphere
Abstract
Solar energetic particles (SEPs) are protons, electrons, and heavy ions emitted from the Sun with energies spanning tens of keV to GeV. They are episodic and associated with energetic events at the Sun such as coronal mass ejections. Importantly, they can be injected into and trapped by the Earth's magnetosphere, forming transient new, intense radiation belts that can severely damage components of our space infrastructure and cause significant backgrounds in instruments on national security and other payloads. Our goal is to understand the conditions under which SEPs become trapped and untrapped in the magnetosphere, how trapping depends on the energy distribution of the trapped particles, and if we can predict the location and persistence of these new radiation belts. Previous studies have shown how trapping can occur for individual shock-driven events but do not explore the overall magnetospheric conditions that can lead to SEP trapping and cannot predict trapped population energy spectra, location, or provide a probabilistic model trapping likelihood. Using events spanning 10 years, we will correlate the magnetospheric conditions that affect trapping and dumping. The results of this study will attempt to answer the questions: What fraction of injected SEPs are trapped,forming new, persistent radiation belts? Is there a geomagnetic field preconditioning required for injected SEPs to be trapped or untrapped? What does the energy distribution of injected SEPs relative to their trapped distribution tell us about the underlying physics of trapping? What is the probability of trapping injected SEPs based on different magnetospheric conditions, and can we use this probability as a predictive tool?
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMSH31B2015E
- Keywords:
-
- 2720 MAGNETOSPHERIC PHYSICS / Energetic particles: trapped;
- 7924 SPACE WEATHER / Forecasting