Climatology of terdiurnal tide in the mesosphere and lower thermosphere from TIMED SABER/TIDI, ground-based sodium lidar and NCAR TIME-GCM model
Abstract
In this paper, we investigate the nature of the terdiurnal tide (8 hour period) in the mesosphere and lower thermosphere (MLT), using the Colorado State University (CSU) temperature/wind sodium lidar data set (41N, 105W) (5 years, 2002 to 2006), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature and Doppler interferometer (TIDI) wind measurement for 7 years (2003 to 2009) both onboard of Thermosphere-ionosphere-Mesosphere-Energetics and Dynamics (TIMED) satellite, and the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model runs (TIME-GCM). The seasonal variability and global structure of the terdiurnal tide will be provided. The amplitude of the terdiurnal tide depends heavily on season, latitude and altitude. For example, at northern mid-latitude, the maximum amplitudes in horizontal wind (20 m/s) and temperature (8 K) appear at 100 km in late winter from the lidar measurement, while it is the weakest in summer. SABER measurement reveals that the maximum of the terdiurnal tide temperature above 100 km occurs near equinox at mid-latitude. TIDI wind finds that the maximum amplitude in meridional wind at mid-latitude is before and after the solstice. The vertical wavelength of the terdiurnal tide will be estimated. The comparison between the TIME-GCM and the observations will enhance our understandings of the excitation, propagation and dissipation of the terdiurnal tide in the atmosphere. This will benefit our future study of the terdiurnal tidal impact in the thermosphere/ionosphere coupling.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMSA41A1842Y
- Keywords:
-
- 3309 ATMOSPHERIC PROCESSES / Climatology;
- 3334 ATMOSPHERIC PROCESSES / Middle atmosphere dynamics;
- 3389 ATMOSPHERIC PROCESSES / Tides and planetary waves;
- 3336 ATMOSPHERIC PROCESSES / Numerical approximations and analyses