East Asian Monsoon and EL NIÑO-SOUTHERN Oscillation Activities Since the Mid-Holocene Evidences from Massive Corals in the the Central Vietnamese Coast, Western South China Sea
Abstract
The climate of the Vietnamese coast, western South China Sea (SCS), is driven by the annually reversing East Asian Monsoon (EAM) system which is also related to the El Niño-Southern Oscillation (ENSO) through teleconnection. Our understanding of EAM activity and its connection with global climate is not fully established. In this study high resolution Sr/Ca and δ18O records derived from four fossil Porites sp. corals with U-series ages ranging from ~7000 to 1800 years (yrs) were used to characterise the EAM-ENSO activities since the mid-Holocene. The results show that both the summer and winter monsoons were stronger than present ~ 7000 yrs ago, as evidenced by the higher-than-present amplitudes of annual cycles in SST (9.1 °C) and seawater δ18O (1.4%). The strengthened summer monsoon is considered to result from higher Northern Hemispheric insolation during the mid-Holocene, while the enhanced winter monsoon could be attributed to a reduction/shutdown of North Atlantic Meridional Overturning (NAMOC), leading to a prevailing "cold tongue" off the Vietnamese coast, and an amplified east-west SST gradient in the northern SCS. The EAM was weakened ca. 4200 yrs ago, as reflected by the lower amplitude of SST (4.3 °C) and seawater δ18O (0.57%) annual cycles. The downturn of the EAM is correlated in timing with the cold phase or the Bond event of the high-latitude climate, the Neolithic cultural collapse in China, and the strengthened ENSO in the Pacific. After this downturn, the EAM was slightly strengthened ~3600 and 1800 yrs ago as shown by larger amplitudes of SST (~ 5 °C) and seawater δ18O (1.0-1.2%) annual cycles. The enhanced EAM at these times are out of phase with the high-latitude climate, but are consistent with evidence from historical documents in Vietnam and China. The waxing/waning of the EAM appear to match with the waning/waxing of the ENSO intensity throughout the records since the mid-Holocene. The changes in EAM activity were accompanied by corresponding variations in the annual rainfall pattern, demonstrated by the difference in the timing of the onset and withdrawal of the rainy season. For instance, around 4200 yrs ago, the rainy season started 5.5 months earlier, compared with other times, including the present.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMPP41B1756N
- Keywords:
-
- 1833 HYDROLOGY / Hydroclimatology;
- 4916 PALEOCEANOGRAPHY / Corals;
- 4922 PALEOCEANOGRAPHY / El Nino;
- 4954 PALEOCEANOGRAPHY / Sea surface temperature