Observations of living non-spinose planktic foraminifers Neogloboquadrina dutertrei and N. pachyderma from specimens grown in culture
Abstract
Electron microprobe image mapping of the Mg/Ca ratio of the non-spinose foraminifera Neogloboquadrina dutertrei (N. dutertrei) reveal high inter (between shell) and intra (within shell) variability in Holocene age samples obtained from the Ceara Rise. EMPA images reveal some tests have relatively homogeneously distributed Mg/Ca ratios while other tests have bands of thin (2-3 μm) high Mg/Ca calcite intercalated between generally thicker (>2 μm) Mg/Ca layers. To gain insight into test development and the biological controls on the Mg/Ca ratio of N. dutertrei and another non-spinose species, N. pachyderma, living specimens were obtained from plankton tow material (~60-150 m depth) from the San Pedro basin ~2km off the coast of Santa Catalina Island, CA during the summer of 2011 and maintained in controlled environmental conditions at the Wrigley Marine Science Center. Specimens were observed under an inverted microscope and moved directly into polystyrene Falcon tissue culture flasks containing filtered seawater containing elevated [Ba] (200nM Ba; ~5x ambient) to label new shell calcite. Specimens were fed thawed one-day old frozen Artemia sp. nauplii every other day when possible (feeding was dependent upon the presence of active rhizopodia). In N. dutertrei , we observed small coccoid symbiotic algae, gametes and/or symbionts released during gametogenesis, and new chamber growth while in culture. N. dutertrei adhered to the bottom of the falcon flasks with the pseudopodia. Pseudopodia were often 2x as long as the maximum width of the test and extended in all directions. N. pachyderma were observed, similar to N. dutertrei, with pseudopodia also extended in all directions and adhered to the bottom of the falcon flask. The cytoplasm of both species was bright orange to reddish, possibly reflecting their food source. We plan to present preliminary geochemical data from laser-ablation - ICPMS profiles to document calcite addition across the test and to determine the relationship of Mg/Ca variability to test ontogeny.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMPP41A1724F
- Keywords:
-
- 4924 PALEOCEANOGRAPHY / Geochemical tracers;
- 4944 PALEOCEANOGRAPHY / Micropaleontology