Next-Level ShakeZoning for Earthquake Hazard Definition in Nevada
Abstract
We are developing "Next-Level ShakeZoning" procedures tailored for defining earthquake hazards in Nevada. The current Federally sponsored tools- the USGS hazard maps and ShakeMap, and FEMA HAZUS- were developed as statistical summaries to match earthquake data from California, Japan, and Taiwan. The 2008 Wells and Mogul events in Nevada showed in particular that the generalized statistical approach taken by ShakeMap cannot match actual data on shaking from earthquakes in the Intermountain West, even to first order. Next-Level ShakeZoning relies on physics and geology to define earthquake shaking hazards, rather than statistics. It follows theoretical and computational developments made over the past 20 years, to capitalize on detailed and specific local data sets to more accurately model the propagation and amplification of earthquake waves through the multiple geologic basins of the Intermountain West. Excellent new data sets are now available for Las Vegas Valley. Clark County, Nevada has completed the nation's very first effort to map earthquake hazard class systematically through an entire urban area using Optim's SeisOpt° ReMi technique, which was adapted for large-scale data collection. Using the new Parcel Map in computing shaking in the Valley for scenario earthquakes is crucial for obtaining realistic predictions of ground motions. In an educational element of the project, a dozen undergraduate students have been computing 50 separate earthquake scenarios affecting Las Vegas Valley, using the Next-Level ShakeZoning process. Despite affecting only the upper 30 meters, the Vs30 geotechnical shear-velocity from the Parcel Map shows clear effects on 3-d shaking predictions computed so far at frequencies from 0.1 Hz up to 1.0 Hz. The effect of the Parcel Map on even the 0.1-Hz waves is prominent even with the large mismatch of wavelength to geotechnical depths. Amplifications and de-amplifications affected by the Parcel Map exceed a factor of two, and are highly dependent on the particular scenario. As well, Parcel Map amplification effects extend into areas not characterized in the Parcel Map. The fully 3-d Next-Level ShakeZoning scenarios show many areas of shaking amplification and de-amplification that USGS ShakeMap scenarios cannot predict. For example, the Frenchman Mountain scenario shows PGV of the two approaches within 15% of each other near the source, but upwards of 200% relative amplification or de-amplification, depending on location, throughout Las Vegas Valley.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMPA51A1800L
- Keywords:
-
- 7212 SEISMOLOGY / Earthquake ground motions and engineering seismology;
- 7290 SEISMOLOGY / Computational seismology;
- 4343 NATURAL HAZARDS / Preparedness and planning;
- 4344 NATURAL HAZARDS / Microzonation and macrozonation