Doppler lidar measurements in the marine boundary layer for offshore wind-energy applications
Abstract
Accurate measurement of wind-speed profiles aloft in the marine boundary layer is a difficult challenge. The development of offshore wind energy is an application that requires accurate information on wind speeds above the surface at the levels occupied by turbine blades. Little measured data are available at these heights, and the behavior of near-surface winds is often unrepresentative of that at the required heights. As a consequence, numerical model data, another potential source of information, is unverified at these levels of the atmosphere. A motion-compensated, high-resolution Doppler lidar measurements of the marine wind flow will be presented. The system, which has been evaluated in several ways, has been used in several ship-borne measurement campaigns over the past decade, and a sampling of data from the 2004 New England Air Quality Study (NEAQS) shows the kind of analysis and information available. Although individual Doppler lidar scans have been shown to provide useful images of the flow structure, the emphasis here is on high-resolution (<10 m in the lowest 100 m), high-precision, profiles of wind speed and direction averaged over 15-min, calculated from the scan data. Examples include time-height cross sections, time series, and profiles of wind speed and direction aloft, and distributions of quantities such as wind speed, shear through the blade layer, and deviations between values of wind speed at hub height calculated from power-law profiles and those measured by the Doppler lidar. These results show strong spatial and temporal variability to the wind field in the marine boundary layer. Winds near the coast show diurnal behavior, and frequent occurrences of low-level jet structure are evident especially during nocturnal periods. Persistent patterns of spatial variability of the flow field due to coastal irregularities should be of particular concern for wind energy planning, because this affects the representativeness of fixed-location measurements and implies that some areas would be favored for wind energy production, whereas others would not.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMOS53A1769P
- Keywords:
-
- 0325 ATMOSPHERIC COMPOSITION AND STRUCTURE / Evolution of the atmosphere;
- 0394 ATMOSPHERIC COMPOSITION AND STRUCTURE / Instruments and techniques;
- 4594 OCEANOGRAPHY: PHYSICAL / Instruments and techniques