Using Projections of Tidal Marsh Ecosystem Response to Sea-Level Rise to Guide Adaptation Planning
Abstract
The large uncertainty associated with estimating the effects of sea-level rise and climate change on tidal marsh ecosystems exacerbates the difficulty in planning for their effective conservation. To address this uncertainty, we modeled the distribution and abundance of tidal marsh bird species in the San Francisco Estuary for the period 2010 to 2110 in relation to projected changes in sea-level rise, salinity, and sediment availability using four future scenarios with assumptions of low or high suspended sediment concentrations and low or high rates of sea-level rise (0.52 or 1.65 m/100 yr). We used the projections of bird populations the modeled uncertainty to develop spatially explicit priorities for conservation and restoration using Zonation conservation planning software. In our models, marsh bird population generally declined from current levels due to the conversion of high and mid-marsh habitat to low-marsh and mudflats and changes in spring and summer salinity. High sea-level rise scenarios had the biggest impact on bird populations, although the effects were muted under high sediment availability scenarios. There was considerable variation in bird population projections among the four future scenarios we tested and the uncertainty tended to increase from 2030 to 2110. Because so little tidal marsh habitat currently remains in the San Francisco Estuary, the spatial prioritization found that all areas currently open to tidal influence were high priorities for conservation. We repeated this prioritization exercise with all barriers to tidal flow (e.g. levees) removed and identified important locations in which restoration by breaching levees would most efficiently provide long-term benefit to tidal marsh bird populations. The projected species distributions and changes in tidal marsh elevations are available in the form of interactive maps and downloadable GIS layers at: www.prbo.org/sfbayslr. This website can help managers plan effective conservation and restoration strategies to foster adaptation to the effects of future climate change.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMIN33D1495V
- Keywords:
-
- 0410 BIOGEOSCIENCES / Biodiversity;
- 1630 GLOBAL CHANGE / Impacts of global change;
- 1637 GLOBAL CHANGE / Regional climate change;
- 1918 INFORMATICS / Decision analysis