Hysteresis, thermomagnetic, and low-temperature magnetic properties of Southwestern U.S. obsidians
Abstract
Geochemical signatures of Southwestern U.S. obsidians have been intensively studied, in part to use as a provenance method for archaeological obsidians (Shackley, 2005). We reported (Sternberg et al. 2010) examined magnetic properties of 50 unoriented samples from 10 geologic obsidian sources in Arizona, Nevada, and New Mexico; here we provide additional results measured at the Institute for Rock magnetism. Room-temperature hysteresis curves were measured using a vibrating sample magnetometer on 58 specimens from all 50 samples. The Quantum Designs Magnetic Properties Measurement System was used to measure low temperature cycling of the natural remanence and/or of a room-temperature saturation isothermal remanence for 10 specimens, and frequency dependence of susceptibility for 7 specimens. A Princeton VSM was used to measure hysteresis curves and thermomagnetic curves for 19 specimens from 17 samples. Eleven of the thermomagnetic curves show Curie temperatures close to that for magnetite, and most of them are almost perfectly reversible. Many of the specimens also show a less well-defined Curie point around 150-200°C; for a few specimens the thermomagnetic behavior is dominated by paramagnetic iron and no ferromagnetic phases can be identified. The low-temperature remanence and susceptibility measurements show the magnetite Verwey transition in almost all specimens, and a significant superparamagnetic presence in only a few cases. Hysteresis parameters plot mainly in the lower half of the PSD domain on a Day plot, and saturation magnetization values indicate magnetite concentrations of about 0.2% to 0.5% for most specimens. The coercivity of remanence decreased considerably for one specimen after surface cleaning, although for 5 other comparisons there was no change.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMGP23A1040S
- Keywords:
-
- 1512 GEOMAGNETISM AND PALEOMAGNETISM / Environmental magnetism;
- 1540 GEOMAGNETISM AND PALEOMAGNETISM / Rock and mineral magnetism