A secondary origin of chondrule magnetization in the Allende CV carbonaceous chondrite
Abstract
Magnetic fields in the solar nebula may have played a key role in the radial transport of angular momentum and mass during the early accretional phase of the solar system. Chondrules and many calcium aluminum inclusions (CAIs), millimeter sized silicate objects found in most chondritic meteorites, were heated to high temperatures and cooled in the nebula and therefore may have recorded a thermoremanent magnetization (TRM) from the nebula field. Additionally, primitive magnetization in chondrules and CAIs may yield constraints about their mode of formation. However, any such primary magnetization may have been significantly altered during subsequent metamorphism and aqueous alteration on the parent asteroid. We performed two tests to determine the nebular origins of remanent magnetization in chondrules and refractory inclusions in the Allende CV3 carbonaceous chondrite: 1) a classic paleomagnetic conglomerate test to identify post-accretional remagnetization events and 2) a unidirectionality test of subsamples taken from individual chondrules and CAIs. We conducted individual measurements of mutually oriented chondrules, CAIs, and matrix as well as SQUID microscope maps of the magnetic fields of 30 μm thin sections. All samples and thin sections were mutually oriented to within 5°. Our results confirm previous findings that all subsamples of the meteorite carry a unidirectional overprint blocked up to 260°-290°C (MT component). Chondrules and CAIs also carry a higher temperature (HT) remanence oriented in scattered directions unrelated to the direction of the MT overprint. We have confirmed that this HT magnetization is not an artifact of the demagnetization procedure but is a preterrestrial component. Measurements of subsamples of single chondrules and CAIs show that the HT magnetization is not unidirectional within each inclusion. Petrographic data suggests that most magnetic minerals in Allende were the product of parent body alteration. These facts suggest that the magnetization in Allende chondrules and CAIs is not a preaccretional TRM and is unlikely to record the nebular field. We suggest that preaccretional remanence in Allende material was destroyed by aqueous alteration and metasomatism, which was followed or coincident with metamorphism that introduced the MT overprint. The HT component we detect may represent a chemical remanent magnetization (CRM) acquired during aqueous alteration.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMGP21B1000C
- Keywords:
-
- 1519 GEOMAGNETISM AND PALEOMAGNETISM / Magnetic mineralogy and petrology;
- 1533 GEOMAGNETISM AND PALEOMAGNETISM / Remagnetization;
- 6205 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Asteroids;
- 6030 PLANETARY SCIENCES: COMETS AND SMALL BODIES / Magnetic fields and magnetism