Land Use and Management Change in the U.S. with Adaptation and Mitigation under Climate Change
Abstract
Land use and management change interact with climate change. Land uses such as forestry, cropping and grazing depend on specific ecosystems that will be affected by climate change. Furthermore, this change will not be uniform across land uses or regions. Consequently, land use productivity will change as will the mix of land uses (Mendelsohn and Dinar 2009). On the other hand, land use has been a major contributor to greenhouse gas emissions (IPCC 2007). Therefore, research focusing on land use change, climate change and greenhouse gas mitigation should consider the interaction between these effects. The research to be reported in this presentation investigates how agricultural and forestry land use and management decisions change across the coterminous U.S. under climate change with and without adaptation plus how a carbon price policy influences decisions, mitigates GHG emissions and alters carbon sequestration. Our approach is to simulate behavior under climate scenarios by 2030 using data from alternative two climate and two vegetation models while allowing for adaptive responses and imposing carbon prices. To do this, we use the Forest and Agricultural Optimization model with Greenhouse Gases (FASOMGHG) (Adams et al. 2005). In total, 16 scenarios are considered involving climate change and GHG prices relative to a base case with no climate change and no adaptation or mitigation. After analyzing results across regions and sectors, our findings include: 1.More land is converted to forestry use and less land is used for agricultural purposes under both the adaptation and mitigation strategies. 2. Harvest rotation of hardwood is lengthened and harvest of softwood and hardwood are reduced when a carbon price is included. However, such management changes were insignificant when only the adaptation strategy is used. 3. The total GHG emissions from agricultural and forestry sector are increased by 2-3 millions tones CO2 equivalent under climate change and adaptation in the absence of GHG prices, but when those prices are introduced emissions are reduced by 6 millions tones CO2 equivalent. Similarly, under climate change, GHG prices stimulate a gain in carbon sequestration in the agricultural and forestry sectors. 4. Forest sector welfare and crop producer surplus is reduced under the adaption policy by a small amount, that is -0.02 and 0.14-0.2 billion dollars respectively. However, forest welfare, agricultural welfare, crop producer surplus and livestock producer surplus all increased, by 0.62, 0.67, 0.84 and 1.48 billion dollars, respectively when GHG prices are introduced. References Adams DM, Alig RJ, McCarl BA et al., 2005. FASOMGHG conceptual structure, and specification: documentation. Texas A&M University, (http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/ 1212FASOMGHG_doc.pdf) IPCC (Intergovernmental Panel on Climate Change), 2007. Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK Mendelsohn R, Dinar A. 2009. Land Use and Climate Change Interactions. Annual Review of Resource Economics. 1: 309-332.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMGC51G1111M
- Keywords:
-
- 0402 BIOGEOSCIENCES / Agricultural systems;
- 0429 BIOGEOSCIENCES / Climate dynamics;
- 0466 BIOGEOSCIENCES / Modeling