Mathematical techniques to characterize nitrogen isotherms from eroded sediments under conventional tillage and no tillage
Abstract
Soil specific surface area (SSA) is one of the most important soil properties as it affects chemical reactivity, cation exchange capacity and, in general, nutrient holding capacity. The SSA of a soil mainly depends on texture, clay type and organic matter content, which in turn are factors affecting the erosion potential. An important consideration in the link between soil erosion and nutrient transfer to waters is the well-documented relation between SSA (or particle size distribution) and nutrient losses. Because, sediment erosion and transport processes are particle size dependent, they influence also SSA. Characterization of both, soil nitrogen adsorption and desorption isotherms by monofractal and multifractal analysis has been demonstrated to be an useful tool, which allows a better understanding of the organization of the soil colloidal complex. Here, we report measures of nitrogen isotherm in sediments produced under three different management histories and we characterize them by various mathematical techniques including fractal and multifractal analysis. Soil and water losses from an Oxisol were evaluated under natural rain, at the experimental station of UNICAMP/ FEAGRI, Campinas, SP, Brazil. Experimental plots were 20 m x 30 m (i.e. 600 m2) and the management systems compared were no-tillage and two different conventional tillage techniques. Specific surface area determined by the classical BET method was significantly lower in sediments eroded from the no-tilled than from the tilled plots. The scaling properties of both nitrogen adsorption and desorption isotherms from all the studied sediment samples could be fitted reasonably well with multifractal models. Various fractal and multifractal parameters obtained from the adsorption and desorption characteristics also were useful to differentiate the impact of tillage treatment on the adsorption and desorption characteristics of the eroded sediments. Reasons for such differences have been already explored.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMEP41C0632M
- Keywords:
-
- 1815 HYDROLOGY / Erosion;
- 1862 HYDROLOGY / Sediment transport;
- 1865 HYDROLOGY / Soils