Permafrost Degradation and Stream Metabolism in the Arctic: The effect of thaw slump sedimentation on biological productivity and water quality in the Selawik River, Northwest Alaska
Abstract
The Selawik River in northwest Alaska, drains ~12,500 km^2 of tree line spruce forest, upland tundra and lowland wetlands. Along the river corridor, high concentrations of fine sediment from a large, young, active retrogressive thaw slump alter the physical and ecological form and function of the stream. This disturbance impacts the entire downstream river corridor, affecting the viability of fish habitat and quality drinking water that subsistence-based native communities depend on. In anticipated warming scenarios, it can be expected that there will be an increase in both the frequency and magnitude of these permafrost degradation features, increasing the extent to which local villages and ecosystems are affected. Our study aims to improve our physical understanding of this system in order to provide biologists, land managers and city officials improved predictive capabilities. Whole stream metabolism (WSM) combines nutrient cycling and organic matter processing to provide an integrated measure of stream health. We utilized a suite of water quality data including temperature, dissolved oxygen, turbidity, pH, pressure, and conductance to calculate WSM values at two experimental reaches up and downstream of the slump over the past three summers. The immediate effects are large magnitude diurnal increases in turbidity, suppressed dissolved oxygen values, and strong attenuation of photosynthetically active radiation (PAR) with depth. We found from 2010 data that, on average, the waters downstream from the slump were 23 times more turbid, had roughly half the dissolved oxygen, and had 4.7 and 2.7 times lower gross primary production (GPP) and ecosystem respiration (ER) respectively. In the summer of 2011, we collected measurements of terrestrial PAR, subsurface PAR, dissolved oxygen and turbidity at multiple river depths at 5 experimental locations. Though turbidity varied roughly by two orders of magnitude and terrestrial PAR increased 850 times between solar midnight and noon, the turbidity suppressed the PAR reaching the bed to almost remove any diurnal signal. The ecological impacts of geomorphic features associated with thawing permafrost is of concern to local populations who rely on their local ecosystems for subsistence, and researchers and land managers interested in the potential impacts of these features under future climate scenarios. Future changes in air temperature and length of the warm season in the Arctic stand to present favorable conditions for generation of more thaw-driven mass wasting processes and subsequent changes to the landscape and its ecosystems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMEP23B0745C
- Keywords:
-
- 0475 BIOGEOSCIENCES / Permafrost;
- cryosphere;
- and high-latitude processes;
- 0495 BIOGEOSCIENCES / Water/energy interactions;
- 0496 BIOGEOSCIENCES / Water quality;
- 1862 HYDROLOGY / Sediment transport