Upper Mantle Seismic Anisotropy Beneath West Antarctica from Shear Wave Splitting Analysis of POLENET/ANET Data
Abstract
We constrain azimuthal anisotropy in the Antarctic upper mantle using shear wave splitting parameters obtained from teleseismic SKS, SKKS, and PKS phases recorded at 30 broad-band seismometers deployed in West Antarctica, and the Transantarctic Mountains as a part of POLENET/ANET. The first seismometers were deployed in late 2007 and additional seismometers were deployed in 2008 and 2009. The seismometers generally operate year-round using solar power, insulated boxes, and either rechargeable AGM or primary lithium batteries. We used an eigenvalue technique to linearize the rotated and shifted shear wave particle motions and determine the best splitting parameters. Robust windows around the individual phases were chosen using the Teanby cluster-analysis algorithm. We visually inspected all results and assigned a quality rating based on factors including signal-to-noise ratios, particle motions, and error contours. The best results for each station were then stacked to get an average splitting direction and delay time. The delay times range from 0.33 to 1.33 s, but generally average about 1 s. We conclude that the splitting results from anisotropy in the upper mantle, since the large splitting times cannot be accumulated in the relatively thin crust (20-30 km) of the region. Overall, fast directions in West Antarctica are at large angles to the direction of Antarctic absolute plate motion in either hotspot or no-net rotation frameworks, showing that the anisotropic fabric does not result from shear associated with the motion of Antarctica over the mantle. The West Antarctic fast directions are also much different than those found in East Antarctica by previous studies. We suggest that the East Antarctic splitting results from anisotropy frozen into the cold cratonic continental lithosphere, whereas West Antarctic splitting is related to Cenozoic tectonism. Stations within the West Antarctic Rift System (WARS), a region of Cenozoic extension, show fast directions subparallel to the inferred WARS extension direction. Stations located in the Ellsworth-Whitmore Mountains (EWM) show fast directions parallel to those found within WARS. Furthermore, results from WARS and from EWM all show relatively large splitting times of 0.6 - 1.33 s. These results suggest upper mantle anisotropy that results from mantle flow and deformation related to the extensional deformation of the region. Two stations were installed in the Pensacola Mountains which are located grid-north of the EWM. The results from this region deviate from the dominant fast orientation seen in WARS but appear to be approximately perpendicular to the strike of the mountain range. Stations in Marie Byrd Land (MBL) show inconsistent fast directions and a wide range of delay times (0.3 - 0.9 s), perhaps as a result of complex mantle fabric related to a possible MBL hotspot.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMDI41A2052A
- Keywords:
-
- 7200 SEISMOLOGY