Characteristics of lead(II) adsorption onto "Natural Red Earth" in simulated environmental conditions
Abstract
Lead is considered as a non-biodegradable and potentially toxic heavy metal and it is found as a common environmental pollutant. Adsorption characteristics of Pb(II) onto natural iron and aluminum coated sand, which is called Natural Red Earth (NRE), have been studied to ascertain the effect of pH, ionic strength, initial sorbate concentrations, temperature and time. Lead(II) adsorption achieved its maximum adsorption of nearly 100% at neutral to slightly acidic conditions. The optimum pH was nearly 5.5 and 6.5 for 2.41 and 24.1 μmol/L initial Pb(II) concentrations, respectively. Lead(II) adsorption was independent of 100 fold variation of ionic strength (0.001 - 0.1), indirectly evidencing dominance of an inner-sphere surface complexation mechanism for 10 fold variation of initial Pb(II) concentrations (2.41 and 24.1 μmol/L). Adsorption edges were quantified with a 2pK generalized diffuse double layer model considering two site types, >FeOH and >AlOH, for Pb(II) binding. The modeling results better fit with the mixture of monodentate and bidentated binding of Pb(II) onto >FeOH site and bidentate binding of Pb(II) onto >AlOH site. The intrinsic constants obtained were log KFeOPb=13.93, log K(FeO)2Pb=11.88 and log K(AlO)2Pb=13.21. Time required to reach the equilibrium was also increase from 15 min to 1hr with increasing Pb(II) concentrations from 2.41 to 24.1 μmol/L. Kinetic data fitted better to pseudo second order kinetic model. Lead(II) adsorption onto NRE was better explained by Two-site Langmuir isotherm with sorption maximum of 1.39x10-2 and 2.30x10-3 mol/kg for two sites with different affinities. Negative Gibbs free energy values indicated spontaneity of Pb(II) adsorption onto NRE, and entropy and enthalpy of adsorption were 124.04 J/K mol and 17.71 KJ/mol, respectively. These results suggested that the NRE could be effectively used as a low cost candidate for removal of Pb(II) from environmental water, since use of low cost materials to treat contaminated water is of importance for the developing world.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.V13D2642M
- Keywords:
-
- 0461 BIOGEOSCIENCES / Metals;
- 0466 BIOGEOSCIENCES / Modeling