Age distribution of lithium-cesium-tantalum enriched pegmatites and relationships to orogeny
Abstract
Pegmatites account for about one third of the world's lithium production, most of the tantalum, and all of the cesium. Pegmatites enriched in these elements (LCT pegmatites) are widely interpreted as extreme fractionation products of orogenic granitic melts, although it is not always possible to tie a particular pegmatite to a known granite of the same age. The global age distribution of LCT pegmatites is similar to the age distributions of common pegmatites, of orogenic granites, and of detrital zircons. Our geochronological synthesis expands on, and generally confirms, the recent study by Tkachev (2011, Geol. Soc. Spec. Publ. 350, 7). The LCT pegmatite maxima at ca. 2650, 1800, 525, 350, and 100 Ma correspond to times of collisional orogeny and, except for the comparatively minor peak at 100 Ma, to times of supercontinent assembly. Between these pulses are long intervals of few or no LCT pegmatites. Global minima in LCT pegmatite abundance overlap with supercontinent tenures at ca. 2450-2225, 1625-1000, 875-725, and 250-200 Ma, as established, for the Precambrian, from global minima in the abundances of passive margins and detrital zircons. A key question that bears on both metallogenesis and exploration strategies is why are some orogenic belts well endowed with LCT pegmatites, whereas other, seemingly similar orogens are barren? For the present study, LCT pegmatites from the Appalachian, Variscan, Damara, and Argentine Precordilleran orogens are being dated by the U-Pb method to relate pegmatite emplacement to other igneous events, shortening, metamorphism, foreland-basin sedimentation, and, on the broadest scale, to supercontinent assembly. Anecdotal evidence suggests that LCT pegmatites typically are emplaced late in orogenic cycles. In the Inland Branch of the Damaride orogen, about 45 m.y. elapsed between initial arc-passive margin collision at ca. 550 Ma and LCT pegmatite emplacement at ca. 505 Ma, very late in the assembly of this part of Gondwana. In the Appalachian orogen, LCT pegmatites evidently were emplaced at ca. 345 and ca. 275 Ma-long after initial arc-passive margin collision. Neither time is particularly remarkable in the long sequence of Appalachian orogenic events. The ca. 275 Ma event was coeval with the last increment of Appalachian plate convergence during the final assembly of Pangea. Possible triggers for melt generation in various pegmatite provinces include late collisional crustal thickening, shear heating, mantle plumes, slab break-off, and lower lithospheric delamination.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.V13B2600M
- Keywords:
-
- 1115 GEOCHRONOLOGY / Radioisotope geochronology;
- 3665 MINERALOGY AND PETROLOGY / Mineral occurrences and deposits;
- 8157 TECTONOPHYSICS / Plate motions: past