The cascading effects of absolute reference frames and geomagnetic polarity timescales on global plate motions
Abstract
Global plate motion models use Africa and the Pacific as the base of plate rotation hierarchies, with many other plates moving relative to them. Relative plate motions in the Mesozoic are generally well resolved where seafloor spreading histories are preserved to the present-day. However, the choice of absolute reference frames, whether they are fixed-hotspot, moving-hotspot, true-polar wander-corrected or pure paleomagnetic, can have significant consequences for the absolute plate velocities of smaller plates that are at the mercy of the cascading effects of movement within a complex plate motion hierarchy. We use GPlates to sample plate velocities through time at equally spaced mesh nodes that are contained within continuously closing plate polygons. We calculate root-mean square plate velocities to isolate the effects of different absolute reference frames on absolute plate velocity trends. Apart from being a quality-control tool for the creation of global plate motion models, this approach allows us to track the source of plate velocity spikes, some of which may be indicative of plate reorganisation events. We use a similar approach to test whether alternative geomagnetic polarity time-scales introduce or help reduce anomalous plate velocity fluctuations in global plate motion models. The choice of timescales can affect the seafloor spreading rates partitioned across stage rotations and models of sea level change. Such a workflow may help test alternative timescales, in order to study the model-dependence and controversies that have recently surfaced regarding proposed plate reorganisation events and the mid-Cretaceous seafloor spreading pulse.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.T23D2443Z
- Keywords:
-
- 8155 TECTONOPHYSICS / Plate motions: general;
- 8157 TECTONOPHYSICS / Plate motions: past