Microstructure evolution of fault rocks at the "brittle-to-plastic" transition
Abstract
In the continental crust, large earthquakes tend to nucleate at the "brittle-to-plastic" transition at depths of ~ 10 - 20 km indicating stress release by rupture at elevated PT. Experimental studies, field observations, and models predict peak strength of the lithosphere at depths where rocks deform by "semi-brittle" flow. Thus, the deformation processes taking place at these conditions are important aspects of the seismic cycle and fault rheology in general. We performed a series of experiments with crushed Verzasca gneiss powder (d ≤ 200 μm), "pre-dried" and 0.2 wt% H2O added, placed between alumina forcing blocks (45° pre-cut) and weld-sealed in Pt jackets. The experiments were performed at Pc = 500, 1000 and 1500 MPa, T = 300°C and 500°C. and shear strain rates of ~10-3 s-1 to ~10-5 s-1 in a solid medium deformation apparatus (Griggs rig). Samples deformed at Pc = 500 MPa attain peak strength (~ 1100-1400 MPa) at γ ~ 2, they weaken by ~20 MPa (300°C) to ~140 MPa (500°C) and reach a steady state. The 300°C experiments are systematically stronger by ~ 330 - 370 MPa than the 500°C experiments, and flow stress increases with increasing strain rate. At Pc = 1000 and 1500 MPa, peak strength (~1300-1600 MPa) is reached at γ = 1 to 1.5 followed by weakening of ~60 (300°C) and ~150 MPa (500°C). The strength difference between 300°C and 500°C samples is 270-330 MPa and does not increase with increasing confining pressure. The peak strength increase with confining pressure is modest (50-150 MPa), indicating that the rocks reach their maximal compressive strength. The microstructure develops as an S-C-C' fabric with dominant C' slip zones. At low strains, the gouge zone is pervasively cut by closely spaced C' shears containing fine-grained material (d < 100 nm). At peak strength, deformation localizes into less densely spaced, ~10 μm thick C'-C slip zones which develop predominantly in feldspars. In TEM, they show no porosity and consist of amorphous material and small crystalline fragments (d ~ 20 nm). During steady state flow, pseudotachylites appear as isolated patches, typically associated with micas (melting temperature ~650°C). Quartz grains show the lowest degree of fragmentation and represent the rheologically strongest phase. Feldspar grains fracture more easily and are the weakest phase. The development of the bulk microstructure evolves with finite strain and does not show any dependence on temperature. CL observations, EDS maps and WDS microprobe data show changes in chemical composition in the slip zones indicating that mechanical disintegration of the grains is accompanied by transport of alkalis, producing a different mineral chemistry even at short experimental time scales (~20 min to 30 hrs). The amorphous to nano-crystalline material is viscously deformed and a pre-cursor for the formation of frictional melt, which is typically more ferromagnesian and basic than the bulk rock composition. Our results indicate that 1) frictional melting can occur even at slow strain-rates 2) is possible during steady-state plastic flow and is not accompanied by a stress drop.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.T13A2345H
- Keywords:
-
- 8034 STRUCTURAL GEOLOGY / Rheology and friction of fault zones;
- 8163 TECTONOPHYSICS / Rheology and friction of fault zones