Along-Strike Variations in Crustal Seismicity in the Central Andes and Geodynamic Implications
Abstract
For the central Andes, we compiled relocated crustal earthquakes (magnitude ≥ 4.5) from the EHB Bulletin and Nipress et al. [2007] and focal mechanisms from the Global CMT catalog and published literature [Alvarado et al., 2005]. These data were plotted in map, cross section, and 3D views in the context of local tomography [Koulakov et al., 2006] and lithospheric boundaries [Tassara et al., in prep]. The results imply major along-strike variations in the mechanisms of crustal deformation. At the latitude of the Altiplano, there is scarce forearc seismicity. The thin-skinned Bolivian retroarc thrust belt shows no seismic events (magnitude ≥ 4.5), suggesting that it is deforming aseismically or locked. In contrast, at the latitude of the Puna to the south (20-25°S), crustal seismicity is more prevalent in both the forearc and retroarc. Within this region, active deformation in the Coastal Cordillera near Antofagasta is occurring along steeply east-dipping normal faults at 15-41 km depth; this is the only part of the central Andean forearc that displays prominent extension. Outboard of this, thrust events at ~15 km depth in the forearc wedge display gently dipping nodal planes, and may be signatures of underplating crust that was tectonically eroded at the trench. Underplating is a likely process by which this region of the forearc has undergone ~1 km of surface uplift during the Neogene. Seismicity with thrust or reverse and oblique focal mechanisms in the retroarc wedge is localized beneath the frontal part of the thick-skinned Eastern Cordilleran thrust belt and the Santa Barbara ranges. Seismicity along discrete, east- and west-dipping planes occurs to near Moho depths (~50 km). While retroarc crustal seismicity continues to the south toward the Juan Fernandez flat slab, there is a concentration of seismic events in the retroarc at the latitude (22-23°S) where there is prominent normal faulting in the forearc. We interpret the compiled data to suggest that at the latitude of the Puna, orogenic wedge tapers of both the forearc and retroarc wedges may be supercritical as a result of late Miocene to Recent lithosphere removal from beneath the hinterland.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.T11B2324M
- Keywords:
-
- 7230 SEISMOLOGY / Seismicity and tectonics;
- 8104 TECTONOPHYSICS / Continental margins: convergent;
- 8107 TECTONOPHYSICS / Continental neotectonics;
- 9360 GEOGRAPHIC LOCATION / South America